Previous |  Up |  Next


Neumann problem; penalty method; finite elements; magnetic field; linear elliptic Neumann problem; Lagrange’s multipliers
We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.
[1] I. Babuška: Uncertainties in engineering design: mathematical theory and numerical experience. In the Optimal Shape, (J. Bennet and M. M. Botkin eds.), Plenum Press (1986), also in Technical Note BN-1044, Univ. of Maryland (1985), 1-35.
[2] J. Céa: Optimization, théorie et algorithmes. Dunod, Paris, 1971. MR 0298892
[3] P. G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[4] I. Doležel: Numerical calculation of the leakage field in the window of a transformer with magnetic shielding. Acta Tech. ČSAV (1981), 563-588.
[5] M. Feistauer: Mathematical methods in fluid dynamics. Longman Scientific & Technical, Harlow, 1993. Zbl 0819.76001
[6] I. Hlaváček J. Nečas: On inequalities of Korn's type. Arch. Rational Mech. Anal. 36 (1970), 305-334. DOI 10.1007/BF00249518 | MR 0252844
[7] M. Křížek W. G. Litvinov: On the methods of penalty functions and Lagrange's multipliers in the abstract Neumann problem. Z. Angew. Math. Mech. (1993).
[8] M. Křížek Z. Milka: On a nonconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions. Banach Center Publ. (1993). MR 1272920
[9] M. Křížek P. Neittaanmäki M. Vondrák: A nontraditional approach for solving the Neumann problem by the finite element method. Mat. Apl. Comput. 11 (1992), 31-40. MR 1185236
[10] W. G. Litvinov: Optimization in elliptic boundary value problems with applications to mechanics. (in Russian), Nauka, Moscow, 1987. MR 0898435 | Zbl 0688.49003
[11] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam, 1981. MR 0600655
[12] B. N. Pšeničnyj, Ju. M. Danilin: Numerical methods in extremum problems. (Russian), Nauka, Moscow, 1975. MR 0474817
[13] L. Schwartz: Analyse mathématique, Vol. 1. Hermann, Paris, 1967.
[14] A. E. Taylor: Introduction to functional analysis. John Wiley & Sons, New York, 1958. MR 0098966 | Zbl 0081.10202
[15] R. Temam: Navier-Stokes equations. North-Holland, Amsterdam, 3rd revised edn, 1984. Zbl 0568.35002
[16] D. E. Ward: Exact penalties and sufficient conditions for optimality in nonsmooth optimization. Optim. Theory Appl. 57 (1988), 485-499. DOI 10.1007/BF02346165 | MR 0944591 | Zbl 0621.90081
Partner of
EuDML logo