Previous |  Up |  Next

Article

Title: On approximation of the Neumann problem by the penalty method (English)
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 6
Year: 1993
Pages: 459-469
Summary lang: English
.
Category: math
.
Summary: We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer. (English)
Keyword: Neumann problem
Keyword: penalty method
Keyword: finite elements
Keyword: magnetic field
Keyword: linear elliptic Neumann problem
Keyword: Lagrange’s multipliers
MSC: 35J05
MSC: 35J25
MSC: 35J50
MSC: 35Q60
MSC: 65N30
MSC: 78-08
MSC: 78A25
idZBL: Zbl 0795.65075
idMR: MR1241449
DOI: 10.21136/AM.1993.104568
.
Date available: 2008-05-20T18:46:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104568
.
Reference: [1] I. Babuška: Uncertainties in engineering design: mathematical theory and numerical experience.In the Optimal Shape, (J. Bennet and M. M. Botkin eds.), Plenum Press (1986), also in Technical Note BN-1044, Univ. of Maryland (1985), 1-35.
Reference: [2] J. Céa: Optimization, théorie et algorithmes.Dunod, Paris, 1971. MR 0298892
Reference: [3] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [4] I. Doležel: Numerical calculation of the leakage field in the window of a transformer with magnetic shielding.Acta Tech. ČSAV (1981), 563-588.
Reference: [5] M. Feistauer: Mathematical methods in fluid dynamics.Longman Scientific & Technical, Harlow, 1993. Zbl 0819.76001
Reference: [6] I. Hlaváček J. Nečas: On inequalities of Korn's type.Arch. Rational Mech. Anal. 36 (1970), 305-334. MR 0252844, 10.1007/BF00249518
Reference: [7] M. Křížek W. G. Litvinov: On the methods of penalty functions and Lagrange's multipliers in the abstract Neumann problem.Z. Angew. Math. Mech. (1993).
Reference: [8] M. Křížek Z. Milka: On a nonconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions.Banach Center Publ. (1993). MR 1272920
Reference: [9] M. Křížek P. Neittaanmäki M. Vondrák: A nontraditional approach for solving the Neumann problem by the finite element method.Mat. Apl. Comput. 11 (1992), 31-40. MR 1185236
Reference: [10] W. G. Litvinov: Optimization in elliptic boundary value problems with applications to mechanics.(in Russian), Nauka, Moscow, 1987. Zbl 0688.49003, MR 0898435
Reference: [11] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [12] B. N. Pšeničnyj, Ju. M. Danilin: Numerical methods in extremum problems.(Russian), Nauka, Moscow, 1975. MR 0474817
Reference: [13] L. Schwartz: Analyse mathématique, Vol. 1.Hermann, Paris, 1967.
Reference: [14] A. E. Taylor: Introduction to functional analysis.John Wiley & Sons, New York, 1958. Zbl 0081.10202, MR 0098966
Reference: [15] R. Temam: Navier-Stokes equations.North-Holland, Amsterdam, 3rd revised edn, 1984. Zbl 0568.35002
Reference: [16] D. E. Ward: Exact penalties and sufficient conditions for optimality in nonsmooth optimization.Optim. Theory Appl. 57 (1988), 485-499. Zbl 0621.90081, MR 0944591, 10.1007/BF02346165
.

Files

Files Size Format View
AplMat_38-1993-6_6.pdf 11.68Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo