Previous |  Up |  Next


iterative methods; block matrix; domain decomposition; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner
An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration.
[1] M. Práger: An iterative method of alternating type for systems with special block matrices. Appl. math. 36 (1991), 72-78. MR 1093483
[2] P. Bjørstad O. Widlund: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM, J. Numer. Anal 23 (1986), 1097-1120. DOI 10.1137/0723075 | MR 0865945
[3] J. Bramble J. Pasciak A. Schatz: An iterative method for elliptic problems on regions partitioned into substructures. Math. Comput. 46 (1986), 361-369. DOI 10.1090/S0025-5718-1986-0829613-0 | MR 0829613
[4] First international symposium on domain decomposition methods for partial differential equations. (R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux, eds.), SIAM, Philadelphia, 1988. MR 0972509 | Zbl 0649.00019
[5] Domain decomposition methods. (T. Chan, R. Glowinski, G. A. Meurant, J. Périaux, O. Widlund, eds.), SIAM, Philadelphia, 1989. MR 0991999 | Zbl 0825.65091
[6] L. D. Marini A. Quarteroni: A relaxation procedure for domain decomposition methods using finite elements. Numer. Math 55 (1989), 575-598. DOI 10.1007/BF01398917 | MR 0998911
[7] M. Práger: Algebraic approach to domain decomposition. Banach Center Publ., Warsaw, to appear. MR 1272930
Partner of
EuDML logo