Title:
|
A two parameter iterative method for solving algebraic systems of domain decomposition type (English) |
Author:
|
Práger, Milan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
38 |
Issue:
|
6 |
Year:
|
1993 |
Pages:
|
470-478 |
. |
Category:
|
math |
. |
Summary:
|
An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration. (English) |
Keyword:
|
iterative methods |
Keyword:
|
block matrix |
Keyword:
|
domain decomposition |
Keyword:
|
relaxation method |
Keyword:
|
numerical experiments |
Keyword:
|
domain decomposition |
Keyword:
|
relaxation parameters |
Keyword:
|
convergence |
Keyword:
|
Neumann-Neumann preconditioner |
MSC:
|
65F10 |
MSC:
|
65F35 |
MSC:
|
65M55 |
MSC:
|
65N22 |
MSC:
|
65N30 |
MSC:
|
65N55 |
idZBL:
|
Zbl 0804.65035 |
idMR:
|
MR1241450 |
DOI:
|
10.21136/AM.1993.104569 |
. |
Date available:
|
2008-05-20T18:46:36Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/104569 |
. |
Reference:
|
[1] M. Práger: An iterative method of alternating type for systems with special block matrices.Appl. math. 36 (1991), 72-78. MR 1093483 |
Reference:
|
[2] P. Bjørstad O. Widlund: Iterative methods for the solution of elliptic problems on regions partitioned into substructures.SIAM, J. Numer. Anal 23 (1986), 1097-1120. MR 0865945, 10.1137/0723075 |
Reference:
|
[3] J. Bramble J. Pasciak A. Schatz: An iterative method for elliptic problems on regions partitioned into substructures.Math. Comput. 46 (1986), 361-369. MR 0829613, 10.1090/S0025-5718-1986-0829613-0 |
Reference:
|
[4] : First international symposium on domain decomposition methods for partial differential equations.(R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux, eds.), SIAM, Philadelphia, 1988. Zbl 0649.00019, MR 0972509 |
Reference:
|
[5] : Domain decomposition methods.(T. Chan, R. Glowinski, G. A. Meurant, J. Périaux, O. Widlund, eds.), SIAM, Philadelphia, 1989. Zbl 0825.65091, MR 0991999 |
Reference:
|
[6] L. D. Marini A. Quarteroni: A relaxation procedure for domain decomposition methods using finite elements.Numer. Math 55 (1989), 575-598. MR 0998911, 10.1007/BF01398917 |
Reference:
|
[7] M. Práger: Algebraic approach to domain decomposition.Banach Center Publ., Warsaw, to appear. MR 1272930 |
. |