Previous |  Up |  Next

Article

Title: A two parameter iterative method for solving algebraic systems of domain decomposition type (English)
Author: Práger, Milan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 6
Year: 1993
Pages: 470-478
.
Category: math
.
Summary: An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration. (English)
Keyword: iterative methods
Keyword: block matrix
Keyword: domain decomposition
Keyword: relaxation method
Keyword: numerical experiments
Keyword: domain decomposition
Keyword: relaxation parameters
Keyword: convergence
Keyword: Neumann-Neumann preconditioner
MSC: 65F10
MSC: 65F35
MSC: 65M55
MSC: 65N22
MSC: 65N30
MSC: 65N55
idZBL: Zbl 0804.65035
idMR: MR1241450
DOI: 10.21136/AM.1993.104569
.
Date available: 2008-05-20T18:46:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104569
.
Reference: [1] M. Práger: An iterative method of alternating type for systems with special block matrices.Appl. math. 36 (1991), 72-78. MR 1093483
Reference: [2] P. Bjørstad O. Widlund: Iterative methods for the solution of elliptic problems on regions partitioned into substructures.SIAM, J. Numer. Anal 23 (1986), 1097-1120. MR 0865945, 10.1137/0723075
Reference: [3] J. Bramble J. Pasciak A. Schatz: An iterative method for elliptic problems on regions partitioned into substructures.Math. Comput. 46 (1986), 361-369. MR 0829613, 10.1090/S0025-5718-1986-0829613-0
Reference: [4] : First international symposium on domain decomposition methods for partial differential equations.(R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux, eds.), SIAM, Philadelphia, 1988. Zbl 0649.00019, MR 0972509
Reference: [5] : Domain decomposition methods.(T. Chan, R. Glowinski, G. A. Meurant, J. Périaux, O. Widlund, eds.), SIAM, Philadelphia, 1989. Zbl 0825.65091, MR 0991999
Reference: [6] L. D. Marini A. Quarteroni: A relaxation procedure for domain decomposition methods using finite elements.Numer. Math 55 (1989), 575-598. MR 0998911, 10.1007/BF01398917
Reference: [7] M. Práger: Algebraic approach to domain decomposition.Banach Center Publ., Warsaw, to appear. MR 1272930
.

Files

Files Size Format View
AplMat_38-1993-6_7.pdf 8.140Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo