Previous |  Up |  Next

Article

Title: On measures of noncompactness in Banach spaces (English)
Author: Banaś, Józef
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 21
Issue: 1
Year: 1980
Pages: 131-143
.
Category: math
.
MSC: 34G20
MSC: 47H09
MSC: 47H10
idZBL: Zbl 0438.47051
idMR: MR566245
.
Date available: 2008-06-05T21:03:56Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105982
.
Reference: [1] J. BANAŚ: Relative measures of noncompactness in Banach spaces.Ph.D. Thesis, Lublin 1978 (in Polish).
Reference: [2] J. BANAŚ K. GOEBEL: Measures of noncompactness in Banach spaces.(preprint). MR 0591679
Reference: [3] J. DANEŠ: On densifying and related mappings and their applications in nonlinear functional analysis.Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. MR 0361946
Reference: [4] J. DANEŠ: Some fixed point theorems in metric and Banach spaces.Comment. Math. Univ. Carolinae 12 (1971), 37-50. MR 0287398
Reference: [5] G. DARBO: Punti uniti in transformazioni a condominio non compatto.Rend. Sem. Math. Univ. Padova, 24 (1955), 84-92. MR 0070164
Reference: [6] K. GOEBEL: Thickness of sets in metric spaces and its applications to the fixed point theory.Habilit. Thesis, Lublin 1970 (in Polish).
Reference: [7] K. GOEBEL W. RZYMOWSKI: An existence theorem for the equation $x' - f(t,x)$ in Banach space.Bull. Acad. Polon. Sci., Ser. Math. Astronom. et Phys., 18, 7 (1970), 367-370. MR 0269957
Reference: [8] I. T. GOHBERG L. S. GOLDENŠTEIN A. S. MARKUS: Investigation of some properties of bounded linear operators in connection with their q-norms.Učen. Zap. Kishinev. Un-ta, 29 (1957), 29-36 (in Russian).
Reference: [9] R. JANICKA W. KACZOR: On the construction of aome measures of noncompactness.Ann. Univ. Mariae Curie -Skłodovaka, Sectio A (preprint).
Reference: [10] K. KURATOWSKI: Sur les espaces complets.Fund. Math. 15 (1930), 301-309.
Reference: [11] B. N. SADOVSKIĬ: Limit compact and condensing operators.Russian Math. Surveys, 27 (1972), 86-144. MR 0428132
Reference: [12] B. N. SADOVSKIĬ: On a fixed point principle.Funkc. Analiz i ego Přilož. 1 (1967), no. 2, 74-76 (in Russian). MR 0211302
.

Files

Files Size Format View
CommentatMathUnivCarol_021-1980-1_10.pdf 901.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo