Previous |  Up |  Next

Article

Title: A constructive proof of the Tychonoff's theorem for locales (English)
Author: Kříž, Igor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 26
Issue: 3
Year: 1985
Pages: 619-630
.
Category: math
.
MSC: 03E25
MSC: 03G30
MSC: 54B10
MSC: 54D30
MSC: 54F05
MSC: 54H99
idZBL: Zbl 0661.54027
idMR: MR817832
.
Date available: 2008-06-05T21:22:35Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106398
.
Reference: [1] J. BÉNABOU: Treillis locaux et paratopologies.Séminaire Ehresmann 1 (1957-58), exposé 2. MR 0121774
Reference: [2] B. BANASCHEWSKI C. J. MULVEY: Stone-Čech compactification of locales, I.Houston J. Math. 6 (1980), 301-312. MR 0597771
Reference: [3] C. H. DOWKER D. PAPERT: Quotient frames and subspaces.Proc. Lond. Math. Soc. 16 (1966), 275-296. MR 0202648
Reference: [4] C. H. DOWKER D. PAPERT: On Urysohn's lemma.General Topology and its relations to Modern Analysis and Algebra II, Prague 1966, 111-114. MR 0238744
Reference: [5] C. H. DOWKER D. STRAUSS: Sums in the category of frames.Houston J. Math. 3 (1976), 17-32. MR 0442900
Reference: [6] J. R. ISBELL: Atomless parts of spaces.Math. Scand. 31 (1972), 5-32. Zbl 0246.54028, MR 0358725
Reference: [7] P. T. JOHNSTONE: The point of pointless topology.Bull. Am. Math. Soc. 8 (1983), 41-43. Zbl 0499.54002, MR 0682820
Reference: [8] P. T. JOHNSTONE: Tychonoff's theorem without the axiom of ohoice.Fund. Math. 113 (1981), 21-35. MR 0641111
Reference: [9] A. JOYAL M. TIERNEY: An extension of the Galois Theory of Grothendieck.preprint. MR 0756176
Reference: [10] J. L. KELLEY: The Tychonoff product theorem implies the axiom of ohoice.Fund. Math. 37 (1950), 75-76. MR 0039982
Reference: [11] H. SIMMONS: A framework for topology.Proc. Wroclaw Logic Conference 1977, North-Holland, 1978, 239-251. MR 0519819
Reference: [12] A. N. TYCHONOFF: Über die topologische Erweiterung von Räumen.Math. Ann. 102 (1930), 544-561. MR 1512595
.

Files

Files Size Format View
CommentatMathUnivCarol_026-1985-3_15.pdf 936.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo