Previous |  Up |  Next

Article

Title: On the basic representation of the affine Kac-Moody Lie algebras $D_n^{(1)}$ (English)
Author: Vougiouklis, Thomas N.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 29
Issue: 1
Year: 1988
Pages: 117-125
.
Category: math
.
MSC: 17B10
MSC: 17B65
MSC: 17B67
MSC: 17B70
idZBL: Zbl 0647.17013
idMR: MR937555
.
Date available: 2008-06-05T21:31:55Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106603
.
Reference: [1] DJOKOVIĆ D.: Classification of Z-graded real semisimple Lie algebras.Journal of Algebra 76 (1982), 367-382. MR 0661861
Reference: [2] DUSHAN P.: Deformations of graded nilpotent Lie algebras.Moscow Un. Math. Bulletin, Vol. 36, No 44 (1981), 62-66. Zbl 0484.17008
Reference: [3] KAČ V.: Infinite Dimensional Lie algebras.Birkhäuser, Boston, 1983. MR 0739850
Reference: [4] KAČ V.: Simple irreducible graded Lie algebras of finite growth.Izv. Akad. Nauk SSSR Ser. Mat. Tom 32 (1968), No 6, 1271-1311. MR 0259961
Reference: [5] KAČ V., KAZHDAN O., LEPOWSKY J., WILSON R.: Realization of the basic representations of the Euclidean Lie algebras.Advances in Math. 42 (1981), 83-112. MR 0633784
Reference: [6] KOSTANT B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group.American Journal of Math. 81 (1959), 973-1032. Zbl 0099.25603, MR 0114875
Reference: [7] LEPOWSKY J., WILSON R.: Construction of the affine Lie algebra $A_1^{(1)}$.Comm. Math. Phys. 62 (1978), 43-53. MR 0573075
Reference: [8] MITZMAN D.: Integral Bases for Affine Lie Algebras and Their Universal Enveloping Algebras.A.M.S. Contemporary Math. Vol. 40 (1985). Zbl 0572.17009, MR 0786830
Reference: [9] MOODY R.: A new class of Lie algebras.Journal of Algebra 10 (1968), 211-230. Zbl 0191.03005, MR 0229687
Reference: [10] VOUGIOUKLIS T.: On affine Kac-Moody Lie algebras.Comment. Math . Univ. Carolinae 26 (1985), 387-395. Zbl 0579.17012, MR 0803936
.

Files

Files Size Format View
CommentatMathUnivCarol_029-1988-1_12.pdf 977.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo