Previous |  Up |  Next

Article

Title: Some new results on accretive multivalued operators (English)
Author: Veselý, Libor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 30
Issue: 1
Year: 1989
Pages: 45-55
.
Category: math
.
MSC: 46B20
MSC: 47H06
idZBL: Zbl 0665.47036
idMR: MR995700
.
Date available: 2008-06-05T21:36:30Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106702
.
Reference: [1] Cudia D. F.: The geometry of Banach spaces. Smoothness.Trans. Amer. Math. Soc. 110 (1964), 284-314. Zbl 0123.30701, MR 0163143
Reference: [2] Giles J. R.: On the characterization of Asplund spaces.J. Austral. Math. Soc. (Ser.A) 32 (1982), 134-144. MR 0643437
Reference: [3] Kato T.: Nonlinear semigroups and evolution equations.J. Math. Soc. Japan 19 (1967), 508- 520. Zbl 0163.38303, MR 0226230
Reference: [4] Kenderov P. S.: Monotone operators in Asplund spaces.C.R. Acad. Bulgare Sci 30 (1977), 963-964. Zbl 0377.47036, MR 0463981
Reference: [5] Kolomý J.: Maximal monotone and accretive multivalued mappings and structure of Banach spaces.Function spaces, Proc. Int. Conf. Poznań 1986, Teubner-Texte zur Math. 103 (1988), 170-177. MR 1066532
Reference: [6] Kolomý J.: Fréchet differentiation of convex functions in a Banach space with a separable dual.Proc. Amer. Math. Soc. 91 (1984), 202-204. MR 0740171
Reference: [7] Preiss D., Zajíček L.: Stronger estimates of smallness of sets of Fréchet nondtfferentiability of convex functions.Proceedings of the 11-th Winter School, Supplement Rend. Circ. Mat. Palermo (Ser. II) (1984). MR 0744387
Reference: [8] Zajíček L.: Sets of $\sigma $-porosity and sets of $\sigma $-porosity$(q)$.Čas. Pěst. Mat. 101 (1976), 350-359. Zbl 0341.30026, MR 0457731
.

Files

Files Size Format View
CommentatMathUnivCarol_030-1989-1_5.pdf 870.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo