Previous |  Up |  Next

Article

Title: Non-convex perturbations of evolution equations with $m$-dissipative operators in Banach spaces (English)
Author: Avgerinos, Evgenios P.
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 30
Issue: 4
Year: 1989
Pages: 657-664
.
Category: math
.
MSC: 34G20
MSC: 35K55
MSC: 47E05
MSC: 47H05
MSC: 47H15
MSC: 47H20
MSC: 47J05
idZBL: Zbl 0715.47040
idMR: MR1045894
.
Date available: 2008-06-05T21:40:26Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106786
.
Reference: [1] H. Attouch A. Damlamian: On multivalued evolution equations in Hilbert spaces.Israel J. Math. 12 (1972), 373-390. MR 0346609
Reference: [2] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, Netherlands 1976. Zbl 0328.47035, MR 0390843
Reference: [3] Ph. Benilan: Solutions integrates d' equations d' evolution dans un espace de Banach.C.R. Acad. Sc. Paris 274 (1972), 47-50. MR 0300164
Reference: [4] H. Brezis: Operateurs Maximaux Monotones.Math. Studies, Vol. 50, North Holland, Amsterdam 1972.
Reference: [5] H. Brezis: New results concerning monotone operators and nonlinear semigroups.Analysis of Nonlinear Problems, RIMS Kyoto Univ. 258 (1974), 2-27. MR 0493537
Reference: [6] A. Cellina M. Marchi: Nonconvex perturbations of maximal monotone inclusions.Israel J. Math. 46 (1983), 1-11. MR 0727019
Reference: [7] A. Fryszkowski: Continuous selections for a class of nonconvex multivalued maps.Studia Math. 76 (1983), 163-174. MR 0730018
Reference: [8] S. Gutman: Evolutions governed by m-accrctive plus compact operators.Nonl. Anal. - T.M.A. 7 (1983), 707-715. MR 0707079
Reference: [9] A. Haraux: Nonlinear Evolution Equations: Global Behavior of Solutions.Lecture Notes in Math. 841, Springer, Berlin 1981. Zbl 0461.35002, MR 0610796
Reference: [10] N. S. Papageorgiou: On measurable multifunciions with applications to random multivalued equations.Math. Japonica 32 (1987), 437-464. MR 0914749
Reference: [11] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math, and Math. Sci 10 (1987), 433-442. Zbl 0619.28009, MR 0896595
Reference: [12] A. Pazy: A class of semilinear equations of evolution.Israel J. Math. 20 (1975), 23-36.
Reference: [13] E. Schechter: Perturbations of regularizing maximal monotone operators.Israel J. Math. 43 (1982), 49-61; and correction, 47 (1984), 236-240. Zbl 0516.34060, MR 0728878
Reference: [14] I. Vrabie: A nonlinear version of Pazy's local existence theorem.Israel J. Math. 32 (1979), 221-235. MR 0531265
.

Files

Files Size Format View
CommentatMathUnivCarol_030-1989-4_6.pdf 796.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo