Previous |  Up |  Next

Article

Title: Bicontractive projections in sequence spaces and a few related kinds of maps (English)
Author: Baronti, Marco
Author: Papini, Pier Luigi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 30
Issue: 4
Year: 1989
Pages: 665-673
.
Category: math
.
MSC: 41A45
MSC: 46A45
MSC: 46B45
MSC: 47A05
MSC: 47A30
MSC: 47B37
idZBL: Zbl 0698.47005
idMR: MR1045895
.
Date available: 2008-06-05T21:40:29Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106787
.
Reference: [1] D. Amir: Characterizations of inner product spaces.Birkhäuser, Basel, 1986. Zbl 0617.46030, MR 0897527
Reference: [2] M. Baronti P. L. Papini: Norm-one projections onto aubspaces of $l^p$.Annali Mat. Pura Appl. (IV), 152 (1988), 53-61. MR 0980971
Reference: [3] M. Baronti P. L. Papini: Norm-one projections onto subspaces of finite condimension in $l^1$ and $c_o$.preprint.
Reference: [4] M. Baronti P. L. Papini: Proximity maps are seldom central.in: Approximation Theory VI (C. K. Chui, L. L. Schumaker eds.) Academic Press, New York, 1989. MR 1090963
Reference: [5] S. J. Bernau H. E. Lacey: Bicontractive projections and reordering of $L^p$-spaces.Pacific J. Math. 69 (1977), 291-302. MR 0487416
Reference: [6] J. Blatter E. W. Cheney: Minimal projections on hyperplanes in sequence spaces.Annali Mat. Pura Appl. (IV), 101 (1974), 215 - 227. MR 0358179
Reference: [7] Y. Friedman B. Russo: Conctraciive projections on $C_0(K)$.Trans. Amer. Math. Soc. 273 (1982), 57 - 73. MR 0664029
Reference: [8] L. V. Gladun: The relation between the numerical ranges of the characteristics of a Banach space and its subspaces.(Russian), Teor. Funktsij., Funktsional. Anal. i Prilozhen. 46 (1986), 21-26. MR 0865785
Reference: [9] S. Kinnunen: On projections and Birkhoff-James orthogonality in Banach spaces.Nieuw Arch. Wisk (4), 2 (1984), 235 - 255. Zbl 0571.46014, MR 0753626
Reference: [10] L. W. Light E. W. Cheney: Approximation theory in tensor product spaces.Springer Berlin, 1985. MR 0817984
Reference: [11] P. M. Miličić: Sur les espaces semi-lisses.Mat. Vesnik (21), 36 (1984), 222 - 226. MR 0776719
Reference: [12] R. Nussbaum: The ball intersection property for Banach spaces.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 19 (1971), 931 - 936. Zbl 0225.46018, MR 0308744
Reference: [13] R. Sine: Rigidity properties of nonexpansive mappings.Nonlin. Anal. 11 (1987), 777 - 794. Zbl 0662.47029, MR 0898574
.

Files

Files Size Format View
CommentatMathUnivCarol_030-1989-4_7.pdf 747.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo