Previous |  Up |  Next

Article

Title: Higher monotonicity properties of special functions: application on Bessel case $|\nu| < \frac{1}{2}$ (English)
Author: Došlá, Zuzana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 2
Year: 1990
Pages: 233-241
.
Category: math
.
MSC: 33C10
MSC: 34A40
MSC: 34A99
MSC: 34C10
MSC: 34C11
idZBL: Zbl 0721.34028
idMR: MR1077894
.
Date available: 2008-06-05T21:43:37Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106853
.
Reference: [1] P. Hartman: On differential equations and the function $J^2_\mu + Y^2_\mu$.Amer. J. Math 83 (1961), 154-188. Zbl 0096.27001, MR 0123039
Reference: [2] P. Hartman: On differential equations, Volterra equations and the functions $J^2_\mu + Y^2_\mu$.Amer. J. Math 95 (1973), 552-593. MR 0333308
Reference: [3] L. Lorch D. J. Neuman: On the composition of completely monotonic functions and completely monotonic sequences and related questions.J. London Math. Soc. (2), 28 (1983), 31-45. MR 0703462
Reference: [4] L. Lorch P. Szego: Monotonicity of the differences of zeros of Bessel functions as a function of order.Proc. Amer. Math. Soc. 15 (1964), 91-96. MR 0158106
Reference: [5] L. Lorch P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions.Acta Math. 109 (1963), 55-73. MR 0147695
Reference: [6] L. Lorch M. E. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions, III..Canad. J. Math. 22 (1970), 1238-1265. MR 0274845
Reference: [7] L. Lorch M. E. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions, IV..Canad. J. Math. 24 (1972), 349-368. MR 0298113
Reference: [8] M. E. Muldoon: Higher monotonicity properties of certain Sturm-Liouville functions.Proceedings of the Royal Society of Edinburgh 77A (1977), 23-37. Zbl 0361.34027, MR 0445033
Reference: [9] J. Vosmanský: Monotonic properties of zeros and extremants of the differential equation $y" + q(t)y = 0$.Arch. Match. (Brno) 6 (1970), 37-74. MR 0296420
Reference: [10] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y" + a(t)y' + b(t)y = 0$.Arch. Math. (Brno) 10 (1974), 87-102. MR 0399578
Reference: [11] D. V. Widder: The Laplace Transform.Princeton Univ. Press 1941. Zbl 0063.08245, MR 0005923
Reference: [12] Z. Došlá M. Háčik M. E. Muldoon: Further higher monotonicity properties of Sturm-Liouville functions.to appear. MR 1242631
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-2_6.pdf 1.079Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo