Previous |  Up |  Next

Article

Title: Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem (English)
Author: Feireisl, Eduard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 2
Year: 1990
Pages: 243-255
.
Category: math
.
MSC: 35B10
MSC: 35B45
MSC: 35Q20
MSC: 35Q72
MSC: 73B30
MSC: 73D35
MSC: 74A15
MSC: 74B10
MSC: 74B20
idZBL: Zbl 0718.73013
idMR: MR1077895
.
Date available: 2008-06-05T21:43:40Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106854
.
Reference: [1] Dafermos C. M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity.SIAM J. Math. Anal. 13 (1982), 397-408. Zbl 0489.73124, MR 0653464
Reference: [2] Day W. A.: Steady forced vibrations in coupled thermoelasticity.Arch. Rational Mech. Anal. 93 (1986), 323-334. Zbl 0597.73008, MR 0829832
Reference: [3] DiPerna R. J.: Convergence of approximate solutions to conservation laws.Arch. Rational Mech. Anal. 82 (1983), 27-70. Zbl 0519.35054, MR 0684413
Reference: [4] Greenberg J. M., MacCamy R. C., Mizel V. J.: On the existence, uniqueness and stability of solutions of the equation $\rho\chi_{tt} = E(\chi_x)\chi_{xx} + \lambda \chi_{xx}$.J. Math. Mech. 17 (1968), 707-728. MR 0225026
Reference: [5] Kato T.: Locally coercive nonlinear equations, with applications to some periodic solutions.Duke Math. J. 51 (1984), 923-936. Zbl 0571.47051, MR 0771388
Reference: [6] Klainerman S.: Global existence for nonlinear wave equation.Comm. Pure Appl. Math. 33 (1980), 43-101. MR 0544044
Reference: [7] Matsumura A.: Global existence and asymptotics of the solutions of the second order quasilinear hyperbolic equations with the first order dissipation.Publ. Res. Inst. Math. Soc. 13 (1977), 349-379. Zbl 0371.35030, MR 0470507
Reference: [8] Racke R.: Initial boundary value problems in one-dimensional non-linear thermoelasticity.Math. Meth. Appl. Sci. 10 (1988), 517-529. MR 0965419
Reference: [9] Rothe E. H.: Introduction to various aspects of degree theory in Banach spaces.Providence AMS, 1986. Zbl 0597.47040, MR 0852987
Reference: [10] Shibata Y.: On the global existence of classical solutions of mixed problem for some second order nonlinear hyperbolic operators with dissipative term in the interior domain.Funkcialaj Ekvacioj 25 (1982), 303-345. Zbl 0524.35070, MR 0707564
Reference: [11] Slemrod M.: Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity.Arch. Rational Mech. Anal. 76 (1981), 97-134. Zbl 0481.73009, MR 0629700
Reference: [12] Zheng S.: Initial boundary value problems for quasilinear hyperbolic-parabolic coupled systems in higher dimensional spaces.Chinese Ann. of Math. 4B(4) (1983), 443-462. Zbl 0509.35056, MR 0741742
Reference: [13] Zheng S.: Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled system.Scienta Sinka, Ser. A 27 (1984), 1274-1286. MR 0794293
Reference: [14] Zheng S., Shen W.: Global solutions to the Cauchy problem of quasilinear hyperbolic-parabolic coupled system.Scienta Sinica, Ser. A 10 (1987), 1133-1149. MR 0942420
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-2_7.pdf 1.181Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo