Previous |  Up |  Next

Article

Title: All linear and bilinear natural concomitants of vector valued differential forms (English)
Author: Cap, Andreas
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 3
Year: 1990
Pages: 567-587
.
Category: math
.
MSC: 53A55
MSC: 58A10
idZBL: Zbl 0734.53012
idMR: MR1078490
.
Date available: 2008-06-05T21:45:23Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106891
.
Reference: [C-dW-G] Cahen M., de Wilde M., Gutt S.: Local cohomology of the algebra of $C^/infty $ -functions on a connected manifold.Lett. Math. Phys. 4 (1980), 157-167. MR 0583079
Reference: [Ca] Cap A.: Natural operators between vector valued differential forms.Proc. Winter School on Geometry and Physics, Srní 1990, to appear. MR 1151896
Reference: [D-C] Dieudonné J. A., Carrell J. B.: Invariant Theory, Old and New.Academic Press, New York - London, 1971. MR 0279102
Reference: [dW-L] de Wilde M., Lecomte P.: Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields on a manifold.Composito Math. 45 (1982), 199-205. MR 0651981
Reference: [K-M] Kolář I., Michor P.: All natural concomitants of vector valued differential forms.Proc. Winter School on Geometry and Physics, Srní 1987, Supp. ai Rend. Circolo Matematico di Palermo II-16 (1987), 101-108. MR 0946715
Reference: [K-M-S] Kolář I., Michor P., Slovák J.: Natural Operators in Differential Geometry.to appear in Springer Ergebnisse. MR 1202431
Reference: [Ko] Kolář I.: Some natural operators in differential geometry.Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986, D. Reidl. MR 0923346
Reference: [Kr-M] Krupka D., Mikolášová V.: On the uniqueness of some differential invariants: d, [ , ], $\nabla $.Czechoslovak Math. J. 34 (1984), 588-597. MR 0764440
Reference: [Mi] Michor P.: Remarks on the Frölicher-Nijenhuis bracket.Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986, D. Reidl. MR 0923350
Reference: [Sl] Slovák J.: Peetre Theorem for Nonlinear Operators.Ann. Global Anal. Geom. 6/3 (1988), 273-283. MR 0982996
Reference: [vS] van Strien S.: Unicity of the Lie Product.Compositio Math. 40 (1980), 79-85. Zbl 0425.58001, MR 0558259
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-3_18.pdf 1.865Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo