Previous |  Up |  Next

Article

Title: Bi-Lipschitz embeddings into low-dimensional Euclidean spaces (English)
Author: Matoušek, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 3
Year: 1990
Pages: 589-600
.
Category: math
.
MSC: 51K99
MSC: 54C25
idZBL: Zbl 0711.54021
idMR: MR1078491
.
Date available: 2008-06-05T21:45:26Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106892
.
Reference: [AM83] Alon N., Milman J.: Embeddings of $l^k_\infty$ in finite dimensional Banach spaces.Israel J. Math 45 (1983), 265-280. MR 0720303
Reference: [Bou85] Bourgain J.: On Lipschitz embedding of finite metric spaces in Hilbert space.Israel J. Math. 52 (1985), 46-52. Zbl 0657.46013, MR 0815600
Reference: [BFM86] Bourgain J., Figiel T., Milman V.: On Hilbertian subspaces of finite metric spaces.Israel J. Math. 55 (1986), 147-152. MR 0868175
Reference: [BMW86] Bourgain J., Milman V., Wolfson H.: On type of metric spaces.Trans. Am. Math. Soc. 294 (1986), 295-317. Zbl 0617.46024, MR 0819949
Reference: [Enf69a] Enflo P.: On a problem of Smironov.Ark. Mat. 8 (1969), 107-109. MR 0415576
Reference: [Enf69b] Enflo P.: On the nonexistence of uniform homeomorphisms between $L_p$-spaces.Ark. Mat. vol 8 (1969), 103-105. MR 0271719
Reference: [FLM77] Figiel T., Lindenstrauss J., Milman V.: The dimension of almost spherical sections of convex bodies.Acta Math. 59 (1977), 53-94. Zbl 0375.52002, MR 0445274
Reference: [Gan59] Ganea T.: Comment on embedding of polyhedra in Euclidean spaces.Bull. Acad. Polon. Sci. SOr. Sci. Math. Astronom. Phys. 7 (1959), 27-32. MR 0102079
Reference: [Hei88] Heiser W. J.: Multidimensional scaling with least absolute residuals.in: Classification and related methods of data analysis, H. H. Bock ed., North Holland (1988), 455-472.
Reference: [JL84] Johnson W., Lindenstrauss J.: Extensions of Lipschitz maps into a Hilbert space.Contemp. Math. 26 (1984), 189-206. MR 0737400
Reference: [JLS87] Johnson W. B., Lindenstrauss J., Schechtman G.: On Lipschitz embedding of finite metric spaces in low dimensional normed spaces.in: Geometrical aspects of functional analysis, (J. Lindenstrauss, V. D. Milman eds.), LNM 1267, Springer-Verlag 1987. Zbl 0631.46016, MR 0907694
Reference: [Km64] Kruskal J. B.: Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis.Psychometrika 29 (1964), 1-27. Zbl 0123.36803, MR 0169712
Reference: [Mat85] Mathar R.: The best Euclidian fit to a given distance matrix in prescribed dimension.Lin. Alg. Appl. 6T (1985), 1-6. MR 0787361
Reference: [Ma89] Matoušek J.: Lipschitz distance of metric spaces.CSc. degree thesis (in Czech), Charles University 1989.
Reference: [MaS66] Mardešić S., Segal J.: A note on polyhedra embeddable in the plane.Michig. Math. J. 33 (1966), 633-638. MR 0199848
Reference: [MaS67] Mardešić S., Segal J.: e-mappxngs and generalized manifolds.Michig. Math. J. 14 (1967), 171-182. MR 0211407
Reference: [MiS86] Milman V. D., Schechtman G.: Asymptotic theory of finite dimensional normed spaces.LNM 1200, Springer-Verlag 1986. Zbl 0606.46013, MR 0856576
Reference: [Scho38] Schoenberg I. J.: Metric spaces and positive definite functions.Trans. Amer. Math. Soc. 44 (1938), 522-536. Zbl 0019.41502, MR 1501980
Reference: [WW75] Wells J. H., Williams L. R.: Embeddings and extensions in analysis.Springer-Verlag 1975. Zbl 0324.46034, MR 0461107
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-3_19.pdf 1.242Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo