Previous |  Up |  Next

Article

Title: On a class of variational problems defined by polynomial Lagrangians (English)
Author: Krupka, Demeter
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 12
Issue: 2
Year: 1976
Pages: 99-105
.
Category: math
.
MSC: 49Q99
MSC: 58A15
MSC: 58C99
idZBL: Zbl 0386.49028
idMR: MR0426039
.
Date available: 2008-06-06T06:02:06Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/106934
.
Reference: [1] R. Hermann: Differential geometry and the calculus of variations.New York (1968). Zbl 0219.49023, MR 0233313
Reference: [2] R. Hermann: Geometry, physics and systems.New York (1973). Zbl 0285.58001, MR 0494183
Reference: [3] D. Krupka: Lagrange theory in fibred manifolds.Rep. Math. Phys. 2 (1971), 121-133. MR 0287582
Reference: [4] D. Krupka: On generalized invariant transformations.Rep. Math. Phys. 5 (1974), 355-360. Zbl 0305.49050, MR 0423411
Reference: [5] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifold. I. Critical sections.J. Math. Anal. Appl. 49 (1975), 180-206. MR 0362397
Reference: [6] Th. H. J. Lepage: Sur les champs géodésiques du Calcul des Variations.Bull. Acad. Roy. Belg., Cl. Sci. V, Sér. 22 (1936), 716, 1036. Zbl 0016.26201
Reference: [7] R. S. Palais: Manifolds of sections of fiber bundles and the calculus of variations.in "Nonlinear Functional Analysis," Proc Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, III., 1968, pp. 195-205, Providence RI, 1970. MR 0271973
Reference: [8] J. Śniatycki: On the geometric structure of classical field theory in Lagrangian formulation.Proc. Camb. Phil. Soc. (1970), 68, 475-484. MR 0261936
Reference: [9] A. Trautman: Invariance of Lagrangian systems.in "General Relativity", papers in honour of J. L. Synge, Oxford (1972). Zbl 0273.58004, MR 0503424
.

Files

Files Size Format View
ArchMath_012-1976-2_6.pdf 697.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo