Previous |  Up |  Next

Article

Title: Translation of natural operators on manifolds with AHS-structures (English)
Author: Čap, Andreas
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 4
Year: 1996
Pages: 249-266
Summary lang: English
.
Category: math
.
Summary: We introduce an explicit procedure to generate natural operators on manifolds with almost Hermitian symmetric structures and work out several examples of this procedure in the case of almost Grassmannian structures. (English)
Keyword: invariant operator
Keyword: AHS structure
Keyword: paraconformal structure
Keyword: almost Grassmannian structure
Keyword: translation principle
MSC: 22E47
MSC: 53C10
MSC: 53C30
MSC: 58H10
MSC: 58J70
idZBL: Zbl 0881.58075
idMR: MR1441397
.
Date available: 2008-06-06T21:31:24Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107579
.
Reference: [1] Bailey, T. N.; Eastwood, M. G.: Complex paraconformal manifolds: their differential geometry and twistor theory.Forum Math. 3 (1991), 61–103. MR 1085595
Reference: [2] Bailey, T. N.; Eastwood, M. G.; Gover, A. R.: Thomas’s structure bundle for conformal, projective and related structures.Rocky Mountain J. 24 (1994), 1191–1217. MR 1322223
Reference: [3] Baston, R. J.: Verma modules and differential conformal invariants.J. Differential Geometry 32 (1990), 851–898. Zbl 0732.53011, MR 1078164
Reference: [4] Baston, R. J.; Eastwood, M. G.: The Penrose Transform: Its Interaction with Representation Theory.Oxford University Press, 1989. MR 1038279
Reference: [5] Čap, A.: A note on endomorphisms of modules over reductive Lie groups and algebras.Proceedings of the Conference Differential Geometry and Applications, Brno, 1995, pp. 127–131, electronically available at www.emis.de.
Reference: [CSS1] Čap, A.; Slovák, J.; Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures, I. invariant differentiation.Preprint ESI 186 (1994), electronically available at www.esi.ac.at. MR 1474550
Reference: [CSS2] Čap, A.; Slovák, J.; Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures, II. normal Cartan connections.Preprint ESI 194 (1995), electronically available at www.esi.ac.at. MR 1620484
Reference: [8] Eastwood, M. G.: Notes on conformal differential geometry.to appear in Rendiconti Circ. Mat. Palermo, Proceedings of the 15th Winter School on Geometry an Physics, Srní, 1995. Zbl 0911.53020, MR 1463509
Reference: [9] Eastwood, M. G.; Rice, J. W.: Conformally invariant differential operators on Minkowski space and their curved analogues.Commun. Math. Phys. 109 (1987), 207–228. MR 0880414
Reference: [10] Eastwood, M. G.; Slovák, J.: Semiholonomic Verma modules.Preprint ESI 376 (1996), electronically available at www.esi.ac.at. MR 1483772
Reference: [11] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes.C. R. Acad. Sci. Paris 239 (1954), 1762–1764. Zbl 0057.15603, MR 0066734
Reference: [12] Ochiai, T.: Geometry associated with semisimple flat homogeneous spaces.Trans. Amer. Math. Soc. 152 (1970), 159–193. Zbl 0205.26004, MR 0284936
.

Files

Files Size Format View
ArchMathRetro_032-1996-4_2.pdf 329.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo