Previous |  Up |  Next

Article

Title: Uniformity and homogeneity of elastic rods, shells and Cosserat three-dimensional bodies (English)
Author: Epstein, Marcelo
Author: de León, Manuel
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 4
Year: 1996
Pages: 267-280
Summary lang: English
.
Category: math
.
Summary: We present a general geometrical theory of uniform bodies which includes three-dimensional Cosserat bodies, rods and shells as particular cases. Criteria of local homogeneity are given in terms on connections. (English)
Keyword: Cosserat media
Keyword: rods
Keyword: shells
Keyword: uniformity
Keyword: homogeneity
Keyword: non-holonomic frame bundles
Keyword: non-holonomic G-structures
Keyword: connections
MSC: 53C10
MSC: 53C80
MSC: 73B99
MSC: 73K99
MSC: 74A20
MSC: 74A35
MSC: 74E15
idZBL: Zbl 0881.73003
idMR: MR1441398
.
Date available: 2008-06-06T21:31:27Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107580
.
Reference: [1] S.S. Antman: Nonlinear Problems of Elasticity.Applied Math. Sci. 107, Springer-Verlag, New York, 1995. Zbl 0820.73002, MR 1323857
Reference: [2] G. Capriz: Continua with Microstructure.Springer Tracts in Natural Philosophy, 35, 1989. Zbl 0676.73001, MR 0985585
Reference: [3] H. Cohen C.N. DeSilva: Nonlinear Theory of Elastic Directed Surfaces.J. Math. Phys. 7 (6) (1967), 960-966.
Reference: [4] L.A. Cordero C.T.J. Dodson M. de León: Differential Geometry of Frame Bundles.Mathematics and Its Applications, Kluwer, Dordrecht, 1989.
Reference: [5] E. Cosserat F. Cosserat: Théorie des corps Déformables.Hermann, Paris, 1909.
Reference: [6] M. de León M. Epstein: On the integrability of second order $G$-structures with applications to continuous theories of dislocations.Reports on Mathematical Physics, 33 (3) (1993), 419-436. MR 1277160
Reference: [7] M. de León M. Epstein: Material bodies of higher grade.C. R. Acad. Sc. Paris, 319, Sér. I, (1994), 615-620. MR 1298293
Reference: [8] M. de León M. Epstein: The geometry of uniformity in second-grade elasticity.Acta Mechanica, 114 1 (1996), 217-224. MR 1375732
Reference: [9] M. de León P.R. Rodrigues: Methods of Differential Geometry in Analytical Mechanics.North-Holland Math. Ser. 152, Amsterdam, 1989. MR 1021489
Reference: [10] M. Elzanowski M. Epstein: On the symmetry group of second-grade materials.Int. J. Non-Linear Mechanics, 27, 4 (1992), 635-638. MR 1175083
Reference: [11] M. Elzanowski S. Prishepionok: Locally Homogeneous Configurations of Uniform Elastic Bodies.Reports on Mathematical Physics, 31 (1992), 229-240. MR 1232644
Reference: [12] M. Elzanowski S. Prishepionok: Connections on higher order frame bundles.Proceedings Colloquium on Differential Geometry, July 25-30, 1994, Debrecen, Hungary.
Reference: [13] M. Elzanowski: Mathematical Theory of Uniform Elastic Structures.Monografie, Politechnika Swietokrzyska, Kielce, 1995.
Reference: [14] M. Epstein M. de León: The Differential Geometry of Cosserat Media.New Developments in Differential Geometry (Debrecen, 1994), Math. Appl., 350, Kluwer Acad. Publ., Dordrecht, 1996, pp. 143-164. MR 1377280
Reference: [15] M. Epstein M. de León: Homogeneity conditions for generalized Cosserat media.Journal of Elasticity, 43 (1996), 180-201. MR 1415542
Reference: [16] M. Epstein M. de León: Differential geometry of continua with structure.Proceedings 8th International Symposium “Continuum Models and Discrete Systems”, Varna, Bulgaria, June 11-16, 1995. World Scientific, Singapore, 1996, pp. 156-163.
Reference: [17] M. Epstein M. de León: Geometric characterization of the homogeneity of continua with microstructure.Proceedings Third Meeting on Current Ideas in Mechanics and Related Fields, Segovia, June 19-23, 1995. Extracta Mathematicae 11 (1) (1996), pp. 116-126. MR 1424749
Reference: [18] M. Epstein M. de León: Geometrical Theory of Uniform Cosserat Media.Preprint IMAFF-CSIC, 1996.
Reference: [19] M. Epstein M. de León: Shell theory and material uniformity.V Pan American Congress of Applied Mechanics, Mayagüez, Puerto Rico, January 2-6, 1997.
Reference: [20] M. Epstein M. de León: Uniformity and homogeneity of deformable surfaces.to appear in C. R. Acad. Sci. Paris, (1996). MR 1375733
Reference: [21] M. Epstein M. de León: On uniformity of shells.Preprint IMAFF-CSIC, 1996. MR 1375733
Reference: [22] J.L. Ericksen: Uniformity in Shells.Arch. Rational Mech. Anal. 37 (1970) 73-84. Zbl 0194.57204, MR 1553543
Reference: [23] J.L. Ericksen: Symmetry transformations for thin elastic shells.Arch. Rational Mech. Anal. 47 (1972) 1-14. Zbl 0242.73045, MR 0359504
Reference: [24] A.C. Eringen, Ch.B. Kafadar: Polar Field Theories.Continuum Physics, Ed. A. Cemal Eringen, vol. IV, Part I, pp. 1-73, Academic Press, New York, 1976. MR 0468445
Reference: [25] A. Fujimoto: Theory of $G$-structures.Publications of the Study Group of Geometry, Vol. I. Tokyo, 1972. Zbl 0235.53035, MR 0348664
Reference: [26] A.E. Green P.M. Naghdi W.L. Wainwright: A General Theory of a Cosserat Surface.Arch. Rational Mech. Anal. 20 (1965) 287-308. MR 0183156
Reference: [27] A.E. Green P.M. Naghdi: Some remarks on the linear theory of shells.Q. J. Mech. Appl. Math. 18 (1965) 257-276. MR 0189334
Reference: [28] S. Kobayashi K. Nomizu: Foundations of Differential Geometry.vol. I, Interscience Publishers, New York, 1963. MR 0152974
Reference: [29] I. Kolář: Generalized $G$-structures and $G$-structures of higher order.Boll. Un. Mat. Ital. (4) 12, no. 3, suppl (1975), 245-256. MR 0445424
Reference: [30] I. Kolář P.W. Michor J. Slovák: Natural Operations in Differential Geometry.Springer-Verlag, Berlin, 1993. MR 1202431
Reference: [31] I. Kolář: Canonical forms on the prolongations of principal fibre bundles.Rev. Roumaine Math. Pures Appl. 16 (1971), 1091-1106. MR 0301668
Reference: [32] P. Libermann: Sur la géométrie des prolongements des spaces fibrés vectoriels.Ann. Inst. Fourier, 14 (1) (1964), 145-172. MR 0167925
Reference: [33] P. Libermann: Surconnexions et connexions affines spéciales.C. R. Acad. Sc. Paris, 261 (1965), 2801-2804. Zbl 0129.36603, MR 0190869
Reference: [34] P. Libermann: Connexions d’ordre supérieur et tenseur de structure.Atti del Convegno Int. di Geometria Differenziale, Bologna, 28-30, September 1967, Ed. Zanichelli, Bologna, 1967, 1-18.
Reference: [35] P. Libermann: Sur les groupoides différentiables et le “presque parallelisme”.Instituto Nazionale di Alta Matematica, Symposia Mathematica, X (1972), 59-93. Zbl 0265.53030, MR 0370668
Reference: [36] P. Libermann: Parallélismes.J. Differential Geometry, 8 (1973), 511-539. Zbl 0284.53023, MR 0353189
Reference: [37] J.E. Marsden: Lectures on Geometric Methods in Mathematical Physics.CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1981. Zbl 0485.70001, MR 0619693
Reference: [38] J.E. Marsden T.J.R. Hughes: Mathematical Foundations of Elasticity.Prentice Hall, New Jersey, 1983.
Reference: [39] G.A. Maugin: The Method of Virtual Power in Continuum Mechanics-Applications to Coupled Fields.Acta Mechanica, 30 (1980), 1-70. MR 0563729
Reference: [40] G.A. Maugin: Material Inhomogeneities in Elasticity.Chapman & Hall, London, 1993. Zbl 0797.73001, MR 1250832
Reference: [41] G.A. Maugin: On the Structure of the Theory of Polar Elasticity.Preprint 1996. MR 1639983
Reference: [42] P. Molino: Théorie des $G$-Structures: Le Probléme d’Equivalence.Lecture Notes in Math., 588, Berlin-New York, Springer, 1977. Zbl 0357.53022, MR 0517117
Reference: [43] W. Noll: Materially Uniform Simple Bodies with Inhomogeneities.Arch. Rational Mech. Anal., 27, (1967), 1-32. MR 0225530
Reference: [44] V. Oproiu: Connections in the semiholonomic frame bundle of second order.Rev. Roum. Math. Pures et Appl., XIV, 5 (1969), 661-672. Zbl 0182.24104, MR 0248671
Reference: [45] J.F. Pommaret: Lie Pseudogroups and Mechanics.Mathematics and Its Applications, Gordon and Breach, New York, 1988. Zbl 0677.58003, MR 0954613
Reference: [46] R.A. Toupin: Elastic materials with couple-stresses.Arch. Rational Mech. Anal. 11, (1962), 385-414. Zbl 0112.16805, MR 0144512
Reference: [47] R.A. Toupin: Theories of Elasticity with Couple-stress.Arch. Rational Mech. Anal. 17, (1964), 85-112. Zbl 0131.22001, MR 0169425
Reference: [48] C. Truesdell W. Noll: The Non-Linear Field Theories of Mechanics.Handbuch der Physik, Vol. III/3, Berlin-New York, Springer, 1965. MR 0193816
Reference: [49] C.C. Wang C. Truesdell: Introduction to rational elasticity.Noordhoff International Publishing, Leyden, 1973. MR 0468442
Reference: [50] C.C. Wang: On the Geometric Structures of Simple Bodies, a Mathematical Foundation for the Theory of Continuous Distributions of Dislocations.Arch. Rational Mech. Anal., 27, (1967), 33-94. Zbl 0187.48802, MR 0229420
Reference: [51] C.C. Wang: Material Uniformity and Homogeneity in Shells.Arch. Rational Mech. Anal. 47 (1972) 343-368. Zbl 0266.73054, MR 0359505
Reference: [52] P.Ch. Yuen: Higher order frames and linear connections.Cahiers de Topologie et Géometrie Différentielle, XII, 3 (1971), 333-371. Zbl 0222.53033, MR 0307102
.

Files

Files Size Format View
ArchMathRetro_032-1996-4_3.pdf 299.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo