Previous |  Up |  Next

Article

Title: Periodic boundary value problem of a fourth order differential inclusion (English)
Author: Švec, Marko
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 1
Year: 1997
Pages: 167-171
Summary lang: English
.
Category: math
.
Summary: The paper deals with the periodic boundary value problem (1) $L_4 x(t) + a(t)x(t) \in F(t,x(t))$, $t\in J= [a,b]$, (2) $L_i x(a)= L_i x(b)$, $i=0,1,2,3$, where $L_0x(t)= a_0x(t)$, $L_ix(t)=a_i(t)L_{i-1}x(t)$, $i=1,2,3,4$, $a_0(t)= a_4(t)=1$, $a_i(t)$, $i=1,2,3$ and $a(t)$ are continuous on $J$, $a(t)\geq 0$, $a_i(t)>0$, $i=1,2$, $a_1(t)= a_3(t)\cdot F(t,x): J \times R \to$\{nonempty convex compact subsets of $R$\}, $R= (-\infty , \infty )$. The existence of such periodic solution is proven via Ky Fan's fixed point theorem. (English)
Keyword: nonlinear boundary value problem
Keyword: differential inclusion
Keyword: measurable selector
Keyword: Ky Fan’s fixed point theorem
MSC: 34A60
MSC: 34B15
MSC: 34C25
MSC: 47J05
MSC: 47N20
idZBL: Zbl 0914.34015
idMR: MR1464311
.
Date available: 2008-06-06T21:33:05Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107607
.
Reference: [1] Y. Kitamura: On nonoscillatory solutions of functional differential equations with a general deviating argument.Hiroshima Math. J. 8 (1978), 49-62. Zbl 0387.34048, MR 0466865
.

Files

Files Size Format View
ArchMathRetro_033-1997-1_18.pdf 214.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo