Title:
|
The nonlinear limit-point/limit-circle problem for higher order equations (English) |
Author:
|
Bartušek, Miroslav |
Author:
|
Došlá, Zuzana |
Author:
|
Graef, John R. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
34 |
Issue:
|
1 |
Year:
|
1998 |
Pages:
|
13-22 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We describe the nonlinear limit-point/limit-circle problem for the $n$-th order differential equation \[ y^{(n)} + r(t)f(y,y^{\prime }, \dots , y^{(n-1)}) = 0. \] The results are then applied to higher order linear and nonlinear equations. A discussion of fourth order equations is included, and some directions for further research are indicated. (English) |
Keyword:
|
Higher order equations |
Keyword:
|
nonlinear limit-point |
Keyword:
|
nonlinear limit-circle |
MSC:
|
34B15 |
MSC:
|
34C05 |
MSC:
|
34C10 |
MSC:
|
34C15 |
idZBL:
|
Zbl 0914.34023 |
idMR:
|
MR1629644 |
. |
Date available:
|
2009-02-17T10:10:00Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107629 |
. |
Reference:
|
[1] M. Bartušek, Z. Došlá: On the limit-point/limit-circle problem for nonlinear third order differential equations.Math. Nachr. 187 (1997), 5–18. MR 1471135 |
Reference:
|
[2] M. Bartušek Z. Došlá, and J. R. Graef: On $L^2$ and limit-point type solutions of fourth order differential equations.Appl. Anal. 60 (1996), 175–187. MR 1623388 |
Reference:
|
[3] M. Bartušek Z. Došlá, and J. R. Graef: Limit-point type results for nonlinear fourth order differential equations.Nonlinear Anal. 28 (1997), 779–792. MR 1422183 |
Reference:
|
[4] M. Bartušek Z. Došlá, and J. R. Graef: Nonlinear limit-point type solutions of $n$th order differential equations.J. Math. Anal. Appl. 209 (1997), 122–139. MR 1444516 |
Reference:
|
[5] N. Dunford, J. T. Schwartz: Linear Operators; Part II: Spectral Theory.Wiley, New York, (1963). Zbl 0128.34803, MR 1009163 |
Reference:
|
[6] M. S. P. Eastham: The limit-$2n$ case of symmetric differential operators of order $2n$.Proc. London Math. Soc. (3) 38 (1979), 272–294. Zbl 0398.34021, MR 0531163 |
Reference:
|
[7] M. S. P. Eastham, C. G. M. Grudniewicz: Asymptotic theory and deficiency indices for fourth and higher order self-adjoint equations: a simplified approach.in: Ordinary and Partial Differential Equations (W. N. Everitt and B. D. Sleeman, eds.), Lecture Notes in Math. Vol 846 Springer Verlag, New York, 1981, pp. 88–99. Zbl 0514.34047, MR 0610637 |
Reference:
|
[8] W. N. Everitt: On the limit-point classification of fourth-order differential equations.J. London Math. Soc. 44 (1969), 273–281. Zbl 0162.39201, MR 0235187 |
Reference:
|
[9] M. V. Fedorjuk: Asymptotic method in the theory of one-dimensional singular differential operators.Trudy Mosk. Matem. Obsch. 15 (1966), 296–345. MR 0208060 |
Reference:
|
[10] J. R. Graef: Limit circle criteria and related properties for nonlinear equations.J. Differential Equations 35 (1980), 319–338. Zbl 0441.34024, MR 0563385 |
Reference:
|
[11] J. R. Graef: Limit circle type results for sublinear equations.Pacific J. Math. 104 (1983), 85–94. Zbl 0535.34024, MR 0683730 |
Reference:
|
[12] J. R. Graef: Some asymptotic properties of solutions of $(a(t)x^{\prime })^{\prime } - q(t)f(x) = r(t)$.in: Differential Equations: Qualitative Theory (Szeged, 1984), Colloquia Mathematica Societatis János Bolyai, Vol. 47, North-Holland, Amsterdam, 1987, pp. 347–359. MR 0890550 |
Reference:
|
[13] J. R. Graef, P. W. Spikes: On the nonlinear limit-point/limit-circle problem.Nonlinear Anal. 7 (1983), 851–871. Zbl 0535.34023, MR 0709039 |
Reference:
|
[14] R. M. Kauffman T. T. Read, and A. Zettl: The Deficiency Index Problem for Powers of Ordinary Differential Expressions.Lecture Notes in Math. Vol. 621, Springer-Verlag, New York, 1977. MR 0481243 |
Reference:
|
[15] R. M. Kauffman: On the limit-$n$ classification of ordinary differential operators with positive coefficients.Proc. London Math. Soc. 35 (1977), 496–526. Zbl 0382.47025, MR 0460780 |
Reference:
|
[16] M. A. Naimark: Linear Differential Operators, Part II.George Harrap & Co., London, 1968. Zbl 0227.34020 |
Reference:
|
[17] R. B. Paris, A. D. Wood: On the $L^2$ nature of solutions of $n$-th order symmetric differential equations and McLeod’s conjecture.Proc. Roy. Soc. Edinburgh 90A (1981), 209–236. Zbl 0483.34014, MR 0647603 |
Reference:
|
[18] B. Schultze: On singular differential operators with positive coefficients.Proc. Roy. Soc. Edinburgh 10A (1992), 361–365. Zbl 0767.34058, MR 1159190 |
Reference:
|
[19] P. W. Spikes: On the integrability of solutions of perturbed nonlinear differential equations.Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 309–318. MR 0514125 |
Reference:
|
[20] P. W. Spikes: Criteria of limit circle type for nonlinear differential equations.SIAM J. Math. Anal. 10 (1979), 456–462. Zbl 0413.34033, MR 0529063 |
Reference:
|
[21] H. Weyl: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörige Entwicklungen willkürlicher Funktionen.Math. Ann. 68 (1910), 220–269. MR 1511560 |
. |