Previous |  Up |  Next

Article

Title: A new approach to the existence of almost everywhere solutions of nonlinear PDEs (English)
Author: Dacorogna, Bernard
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 23-29
Summary lang: English
.
Category: math
.
Summary: We discuss the existence of almost everywhere solutions of nonlinear PDE’s of first (in the scalar and vectorial cases) and second order. (English)
Keyword: A. e. solutions of nonlinear PDE’s
Keyword: Baire category theorem
Keyword: quasiconvex hull
MSC: 35D05
MSC: 35F20
MSC: 35F30
idZBL: Zbl 0911.35029
idMR: MR1629648
.
Date available: 2009-02-17T10:10:04Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107630
.
Reference: [1] A. Bressan F. Flores: On total differential inclusions.Rend. Sem. Mat. Univ. Padova, 92 (1994), 9–16. MR 1320474
Reference: [2] L. Caffarelli L. Nirenberg J. Spruck: The Dirichlet problem for nonlinear second order elliptic equations, I: Monge-Ampère equations.Comm. Pure Appl. Math., 37 (1984), 369–402. MR 0739925
Reference: [3] P. Cardaliaguet B. Dacorogna W. Gangbo N. Georgy: Geometric restrictions for the existence of viscosity solutions.to appear in Annales Inst. H. Poincaré, Analyse Non Linéaire (1999). MR 1674769
Reference: [4] P. Celada S. Perrotta: Functions with prescribed singular values of the gradient.preprint. MR 1638920
Reference: [5] A. Cellina: On the differential inclusion $x^{\prime }\in \left[ -1,1\right] $.Atti. Accad. Naz. Lincei, Rend. Sci. Fis. Mat. Nat., 69 (1980), 1–6. Zbl 0922.34009, MR 0641583
Reference: [6] A. Cellina S. Perrotta: On a problem of potential wells.J. Convex Anal. 2 (1995), 103–115. MR 1363363
Reference: [7] M.G. Crandall H. Ishii P.L. Lions: User’s guide to viscosity solutions of second order partial differential equations.Bull. Amer. Math. Soc., 27 (1992), 1–67. MR 1118699
Reference: [8] B. Dacorogna: Direct methods in the calculus of variations.Applied Math. Sciences, 78, Springer, Berlin (1989). Zbl 0703.49001, MR 0990890
Reference: [9] B. Dacorogna P. Marcellini: Existence of minimizers for non quasiconvex integrals.Arch. Rational Mech. Anal., 131 (1995), 359–399. MR 1354700
Reference: [10] B. Dacorogna P. Marcellini: General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases.Acta Mathematica, 178 (1997), 1–37. MR 1448710
Reference: [11] B. Dacorogna P. Marcellini: Cauchy-Dirichlet problem for first order nonlinear systems.to appear in Journal of Functional Analysis (1998). MR 1607932
Reference: [12] B. Dacorogna P. Marcellini: Implicit second order partial differential equations.to appear in Annali Scuola Normale Sup. Pisa, special issue in memory of E. de Giorgi. MR 1655520
Reference: [13] B. Dacorogna C. Tanteri: On the different convex hulls of sets involving singular values.to appear in Proceedings Royal Soc. Edinburgh. MR 1664109
Reference: [14] F. S. De Blasi G. Pianigiani: Non convex valued differential inclusions in Banach spaces.J. Math. Anal. Appl., 157 (1991), 469–494. MR 1112329
Reference: [15] F. S. De Blasi G. Pianigiani: On the Dirichlet problem for Hamilton-Jacobi equations. A Baire category approach.preprint.
Reference: [16] L. C. Evans: Classical solutions of fully nonlinear, convex, second-order elliptic equations.Comm. Pure Appl. Math., 25 (1982), 333–363. Zbl 0469.35022, MR 0649348
Reference: [17] S. N. Kruzkov : Generalized solutions of Hamilton-Jacobi equation of eikonal type.USSR Sbornik, 27 (1975), 406–446.
Reference: [18] P. L. Lions : Generalized solutions of Hamilton-Jacobi equations.Research Notes in Math.. 69, Pitman, London (1982). Zbl 0497.35001, MR 0667669
Reference: [19] C. B. Morrey: Multiple integrals in the calculus of variations.Springer, Berlin (1966). Zbl 0142.38701
Reference: [20] S. Müller V. Sverak: Attainment results for the two-well problem by convex integration.edited by J. Jost, International Press (1996), 239–251. MR 1449410
Reference: [21] N. S. Trudinger: Fully nonlinear, uniformly elliptic equations under natural structure conditions.Trans. Amer. Math. Soc., 278 (1983), 751–769. Zbl 0518.35036, MR 0701522
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_4.pdf 201.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo