Previous |  Up |  Next

Article

Title: Behaviour of solutions of linear differential equations with delay (English)
Author: Diblík, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 31-47
Summary lang: English
.
Category: math
.
Summary: This contribution is devoted to the problem of asymptotic behaviour of solutions of scalar linear differential equation with variable bounded delay of the form \[ \dot{x}(t)= -c(t)x(t-\tau (t)) \qquad \mathrm {{(^*)}}\] with positive function $c(t).$ Results concerning the structure of its solutions are obtained with the aid of properties of solutions of auxiliary homogeneous equation \[ \dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))] \] where the function $\beta (t)$ is positive. A result concerning the behaviour of solutions of Eq. (*) in critical case is given and, moreover, an analogy with behaviour of solutions of the second order ordinary differential equation \[ x^{\prime \prime }(t)+a(t)x(t)=0 \] for positive function $a(t)$ in critical case is considered. (English)
Keyword: Positive solution
Keyword: oscillating solution
Keyword: convergent solution
Keyword: linear differential equation with delay
Keyword: topological principle of Ważewski (Rybakowski’s approach)
MSC: 34K11
MSC: 34K25
idZBL: Zbl 0914.34065
idMR: MR1629652
.
Date available: 2009-02-17T10:10:09Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107631
.
Reference: [1] O. Arino M. Pituk: Convergence in asymptotically autonomous functional differential equations.University of Veszprém, Department of Mathematics and Computing, preprint No. 065 (1997). MR 1708180
Reference: [2] F. V. Atkinson J. R. Haddock: Criteria for asymptotic constancy of solutions of functional differential equations.J. Math. Anal. Appl. 91 (1983), 410-423. MR 0690880
Reference: [3] Li Bingtuan: Oscillation of first order delay differential equations.Proc. Amer. Math. Soc. 124 (1996), 3729-3737. Zbl 0865.34057, MR 1363175
Reference: [4] Li Bingtuan: Oscillations of delay differential equations with variable coefficients.J. Math. Anal. Appl. 192 (1995), 312-321. MR 1329426
Reference: [5] J. Čermák: On the asymptotic behaviour of solutions of certain functional differential equations.to appear in Math. Slovaca.
Reference: [6] J. Diblík: A criterion for convergence of solutions of homogeneous delay linear differential equations.submitted.
Reference: [7] J. Diblík: A criterion for existence of positive solutions of systems of retarded functional differential equations.to appear in Nonlin. Anal., T. M. A. MR 1705781
Reference: [8] J. Diblík: Asymptotic representation of solutions of equation $\dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))],$.J. Math. Anal. Appl., 217 (1998), 200–215. MR 1492085
Reference: [9] J. Diblík: Existence of solutions with prescribed asymptotic for certain systems retarded functional differential equations.Siberian Mathematical Journal, 32 (1991), (No 2), 222–226. MR 1138440
Reference: [10] J. Diblík: Existence of decreasing positive solutions of a system of linear differential equations with delay.Proceedings of the Fifth International Colloquium on Differential Equations, VSP, Eds.: D. Bainov and V. Covachov, 83–94, 1995. MR 1458348
Reference: [11] J. Diblík: Positive and oscillating solutions of differential equations with delay in critical case.J. Comput. Appl. Math., 88 (1998), 185–202. MR 1609086
Reference: [12] A. Domoshnitsky M. Drakhlin: Nonoscillation of first order differential equations with delay.J. Math. Anal. Appl., 206 (1997), 254–269. MR 1429290
Reference: [13] Y. Domshlak: Sturmian Comparison Method in Investigation of the Behavior of Solutions for Differential-Operator Equations.ELM, Baku, USSR, 1986. (In Russian) MR 0869589
Reference: [14] Y. Domshlak I. P. Stavroulakis: Oscillation of first-order delay differential equations in a critical case.Applicable Analysis, 61 (1996), 359–371. MR 1618248
Reference: [15] Á. Elbert I. P. Stavroulakis: Oscillation and non-oscillation criteria for delay differential equations.Proc. Amer. Math. Soc., 123 (1995), 1503–1510. MR 1242082
Reference: [16] L. H. Erbe Q. Kong B. G. Zhang: Oscillation Theory for Functional Differential Equations.Marcel Dekker, Inc., 1995. MR 1309905
Reference: [17] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Population Dynamics.Kluwer Academic Publishers, 1992. Zbl 0752.34039, MR 1163190
Reference: [18] I. Györi G. Ladas: Oscillation Theory of Delay Differential Equations.Clarendon Press, 1991. MR 1168471
Reference: [19] I. Györi M. Pituk: Comparison theorems and asymptotic equilibrium for delay differential and difference equations.Dynamic Systems and Application, 5 (1996), 277–302. MR 1396192
Reference: [20] J. K. Hale S. M. V. Lunel: Introduction to Functional Differential Equations.Springer-Verlag, 1993. MR 1243878
Reference: [21] P. Hartman: Ordinary Differential Equations.John Wiley & Sons, 1964. Zbl 0125.32102, MR 0171038
Reference: [22] E. Hille: Non-oscillation theorems.Trans. Amer. Math. Soc., 64 (1948), 232–252. Zbl 0031.35402, MR 0027925
Reference: [23] J. Jaroš I. P. Stavroulakis: Oscillation tests for delay equations.Technical Report No 265, University of Ioannina, Department of Mathematics, June 1996.
Reference: [24] A. Kneser: Untersuchungen über die reelen Nullstellen der Integrale linearen Differentialgleichungen.Math. Ann., 42 (1893), 409–503; J. Reine Angew. Math., 116 (1896), 178–212. MR 1510784
Reference: [25] R. G. Koplatadze T. A. Chanturija: On the oscillatory and monotonic solutions of first order differential equations with deviating arguments.Differencial’nyje Uravnenija, 18 (1982), 1463–1465. (In Russian) MR 1034096
Reference: [26] E. Kozakiewicz: Conditions for the absence of positive solutions of a first order differential inequality with a single delay.Archivum Mathematicum (Brno), 31 (1995), 291–297. Zbl 0849.34054, MR 1390588
Reference: [27] E. Kozakiewicz: Conditions for the absence of positive solutions of a first order differential inequality with one continuously retarded argument.Berlin, preprint, (1997), 1–6. MR 1669773
Reference: [28] E. Kozakiewicz: Über das asymptotische Verhalten der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument.Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 13:4 (1964), 577–589. Zbl 0277.34085
Reference: [29] E. Kozakiewicz: Zur Abschätzung des Abklingens der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument.Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 15:5 (1966), 675–676. Zbl 0221.34025, MR 0216262
Reference: [30] E. Kozakiewicz: Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument.Math. Nachr., 32: 1/2 (1966), 107–113. Zbl 0182.15504, MR 0204801
Reference: [31] T. Krisztin: A note on the convergence of the solutions of a linear functional differential equation.J. Math. Anal. Appl., 145 (1990), 17–25, (1990). Zbl 0693.45012, MR 1031171
Reference: [32] A. D. Myshkis: Linear Differential Equations with Retarded Arguments.(2nd Ed.), Nauka, 1972. [In Russian] MR 0352648
Reference: [33] F. Neuman: On equivalence of linear functional-differential equations.Results in Mathematics, 26 (1994), 354–359. Zbl 0829.34054, MR 1300618
Reference: [34] F. Neuman: On transformations of differential equations and systems with deviating argument.Czechoslovak Mathematical Journal, 31 (106) (1981), 87–90. Zbl 0463.34051, MR 0604115
Reference: [35] M. Pituk: Asymptotic characterization of solutions of functional differential equations.Bolletino U. M. I., 7, 7-B, (1993), 653–683. Zbl 0809.34087, MR 1244413
Reference: [36] K. P. Rybakowski: Ważewski’s principle for retarded functional differential equations.Journal of Differential Equations, 36 (1980), 117–138. Zbl 0407.34056, MR 0571132
Reference: [37] C. A. Swanson: Comparison and Oscillating Theory of Linear Differential Equations.Academic Press, 1968. MR 0463570
Reference: [38] T. Ważewski: Sur un principle topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles.Ann. Soc. Polon. Math., 20 (1947), 279–313. MR 0026206
Reference: [39] J. Werbowski: Oscillations of first order linear differential equations with delay.Proceedings of the Conference on Ordinary Differential Equations, Poprad (Slovak Republic), 87–94, 1996. Zbl 0911.34062
Reference: [40] Yu Jiang, Yan Jurang: Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses.J. Math. Anal. Appl., 207 (1997), 388–396. Zbl 0877.34054, MR 1438921
Reference: [41] S. N. Zhang: Asymptotic behaviour and structure of solutions for equation $\dot{x}(t)=p(t)[x(t)-x(t-1)],$.J. Anhui University (Natural Science Edition), 2 (1981), 11–21. (In Chinese)
Reference: [42] D. Zhou: On a problem of I. Györi.J. Math. Anal. Appl., 183 (1994), 620–623. Zbl 0803.34070, MR 1274862
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_5.pdf 328.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo