Previous |  Up |  Next

Article

Title: Singular eigenvalue problems for second order linear ordinary differential equations (English)
Author: Elbert, Árpád
Author: Kusano, Takaŝi
Author: Naito, Manabu
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 59-72
Summary lang: English
.
Category: math
.
Summary: We consider linear differential equations of the form \[ (p(t)x^{\prime })^{\prime }+\lambda q(t)x=0~~~(p(t)>0,~q(t)>0) \qquad \mathrm {(A)}\] on an infinite interval $[a,\infty )$ and study the problem of finding those values of $\lambda $ for which () has principal solutions $x_{0}(t;\lambda )$ vanishing at $t = a$. This problem may well be called a singular eigenvalue problem, since requiring $x_{0}(t;\lambda )$ to be a principal solution can be considered as a boundary condition at $t=\infty $. Similarly to the regular eigenvalue problems for () on compact intervals, we can prove a theorem asserting that there exists a sequence $\lbrace \lambda _{n}\rbrace $ of eigenvalues such that $\displaystyle 0<\lambda _{0}<\lambda _{1}<\cdots <\lambda _{n}<\cdots $, $\displaystyle \lim _{n\rightarrow \infty }\lambda _{n}=\infty $, and the eigenfunction $x_{0}(t;\lambda _{n})$ corresponding to $\lambda = \lambda _{n}$ has exactly $n$ zeros in $(a,\infty ),~n=0,1,2,\dots $. We also show that a similar situation holds for nonprincipal solutions of () under stronger assumptions on $p(t)$ and $q(t)$. (English)
Keyword: Singular eigenvalue problem
Keyword: Sturm-Liouville equation
Keyword: zeros of nonoscillatory solutions
MSC: 34B05
MSC: 34B24
MSC: 34B40
MSC: 34C10
idZBL: Zbl 0914.34021
idMR: MR1629660
.
Date available: 2009-02-17T10:10:18Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107633
.
Reference: [1] P. Hartman: Ordinary Differential Equations.Wiley, New York, 1964. Zbl 0125.32102, MR 0171038
Reference: [2] P. Hartman: Boundary value problems for second order ordinary differential equations involving a parameter.J. Differential Equations 12 (1972), 194–212. Zbl 0255.34012, MR 0335927
Reference: [3] E. Hille: Lectures on Ordinary Differential Equations.Addison-Wesley, Reading, Massachusetts, 1969. Zbl 0179.40301, MR 0249698
Reference: [4] Y. Kabeya: Uniqueness of nodal fast-decaying radial solutions to a linear elliptic equations on $\mathbb{R}^n$.preprint.
Reference: [5] M. Naito: Radial entire solutions of the linear equation $\Delta u + \lambda p(|x|)u = 0$.Hiroshima Math. J. 19 (1989), 431–439. Zbl 0716.35002, MR 1027944
Reference: [6] Z. Nehari: Oscillation criteria for second-order linear differential equations.Trans. Amer. Math. Soc. 85 (1957), 428–445. Zbl 0078.07602, MR 0087816
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_7.pdf 268.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo