Previous |  Up |  Next

Article

Title: Bifurcation of periodic and chaotic solutions in discontinuous systems (English)
Author: Fečkan, Michal
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 73-82
Summary lang: English
.
Category: math
.
Summary: Chaos generated by the existence of Smale horseshoe is the well-known phenomenon in the theory of dynamical systems. The Poincaré-Andronov-Melnikov periodic and subharmonic bifurcations are also classical results in this theory. The purpose of this note is to extend those results to ordinary differential equations with multivalued perturbations. We present several examples based on our recent achievements in this direction. Singularly perturbed problems are studied as well. Applications are given to ordinary differential equations with both dry friction and relay hysteresis terms. (English)
Keyword: Chaotic and periodic solutions
Keyword: differential inclusions
Keyword: relay hysteresis
MSC: 34A60
MSC: 34C23
MSC: 34C25
MSC: 34E15
MSC: 37D45
MSC: 37J40
MSC: 58F13
idZBL: Zbl 0914.34039
idMR: MR1629664
.
Date available: 2009-02-17T10:10:23Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107634
.
Reference: [1] Andronow A. A., Witt A. A., Chaikin S. E.: Theorie der Schwingungen I.Akademie Verlag, Berlin, 1965
Reference: [2] Bliman P. A., Krasnosel’skii A. M.: Periodic solutions of linear systems coupled with relay.Proc. 2nd. World Congr. Nonl. Anal., Athens – 96, Nonl. Anal., Th., Meth., Appl., 30 (1997), 687–696 Zbl 0888.34036, MR 1487651
Reference: [3] Butenin N. V., Nejmark Y. I., Fufaev N. A.: An Introduction to the Theory of Nonlinear Oscillations.Nauka, Moscow, 1987, (in Russian) MR 0929029
Reference: [4] Chicone C.: Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators.J. Differential Equations, 112 (1994), 407–447 MR 1293477
Reference: [5] Deimling K.: Multivalued Differential Equations.W. De Gruyter, Berlin, 1992 Zbl 0820.34009, MR 1189795
Reference: [6] Deimling K.: Multivalued differential equations and dry friction problems.in Proc. Conf. Differential and Delay Equations, Ames, Iowa 1991 (A. M. Fink, R. K. Miller, W. Kliemann, eds.), World Scientific, Singapore 1992, 99–106 MR 1170147
Reference: [7] Deimling K., Szilágyi P.: Periodic solutions of dry friction problems.Z. angew. Math. Phys. (ZAMP), 45 (1994), 53–60 MR 1259526
Reference: [8] Deimling K., Hetzer G., Shen W.: Almost periodicity enforced by Coulomb friction.Adv. Differential Equations, 1 (1996), 265–281 Zbl 0838.34016, MR 1364004
Reference: [9] den Hartog J. P.: Mechanische Schwingungen.2nd ed., Springer-Verlag, Berlin, 1952 Zbl 0046.17201
Reference: [10] Fečkan M.: Bifurcation of periodic solutions in differential inclusions.Appl. Math., 42 (1997), 369–393 Zbl 0903.34036, MR 1467555
Reference: [11] Fečkan M.: Bifurcation from homoclinic to periodic solutions in singularly perturbed differential inclusions.Proc. Royal Soc. Edinburgh, 127A (1997), 727–753 Zbl 0990.34038, MR 1465417
Reference: [12] Fečkan M.: Chaotic solutions in differential inclusions: Chaos in dry friction problems.Trans. Amer. Math. Soc. (to appear) Zbl 0921.34016, MR 1473440
Reference: [13] Fečkan M.: Bifurcation from homoclinic to periodic solutions in ordinary differential equations with multivalued perturbations.J. Differential Equations, 130 (1996), 415-450 MR 1410897
Reference: [14] Fečkan M.: Chaos in ordinary differential equations with multivalued perturbations: applications to dry friction problems.Proc. 2nd. World Congr. Nonl. Anal., Athens – 96, Nonl. Anal., Th., Meth., Appl., 30 (1997), 1355–1364 Zbl 0894.34010, MR 1490058
Reference: [15] Fečkan M.: Periodic solutions in systems at resonances with small relay hysteresis.Math. Slovaca (to appear) Zbl 1047.34011, MR 1804472
Reference: [16] Fečkan M., Gruendler J.: Bifurcation from homoclinic to periodic solutions in ordinary differential equations with singular perturbations.preprint
Reference: [17] Gruendler J.: Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations.J. Differential Equations, 122 (1996), 1–26 MR 1356127
Reference: [18] Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.Springer-Verlag, New York, 1983 Zbl 0515.34001, MR 0709768
Reference: [19] Kauderer H.: Nichtlineare Mechanik.Springer-Verlag, Berlin, 1958 Zbl 0080.17409, MR 0145709
Reference: [20] Kunze M.: On Lyapunov exponents for non-smooth dynamical systems with an application to a pendulum with dry friction.preprint, 1997 MR 1758290
Reference: [21] Kunze M., Michaeli B.: On the rigorous applicability of Oseledet’s ergodic theorem to obtain Lyapunov exponents for non-smooth dynamical systems.submitted to the Proc. 2nd. Marrakesh Inter. Conf. Differential Eq., Ed. A. Vanderbauwhede, 1995
Reference: [22] Kunze M., Küpper T.: Qualitative bifurcation analysis of a non-smooth friction-oscillator model.Z. angew. Math. Phys. (ZAMP), 48 (1997), 87–101 Zbl 0898.70013, MR 1439737
Reference: [23] Kunze M., Küpper T., You J.: On the application of KAM theory to non-smooth dynamical systems.Differential Equations, 139 (1997), 1–21 MR 1467350
Reference: [24] Macki J. W., Nistri P., Zecca P.: Mathematical models for hysteresis.SIAM Review, 35 (1993), 94–123 Zbl 0771.34018, MR 1207799
Reference: [25] Macki J. W., Nistri P., Zecca P.: Periodic oscillations in systems with hysteresis.Rocky Mountain J. Math. 22 (1992), 669–681 Zbl 0759.34013, MR 1180729
Reference: [26] Popp K.: Some model problems showing stick-slip motion and chaos.ASME WAM, Proc. Symp. Friction-Induced Vibration, Chatter, Squeal and Chaos (R. A. Ibrahim and A. Soom, eds.) DE–49 (1992), 1–12
Reference: [27] Popp K., Hinrichs N., Oestreich M.: Dynamical behaviour of a friction oscillator with simultaneous self and external excitation.Sādhanā 20, 2–4 (1995), 627–654 Zbl 1048.70503, MR 1375904
Reference: [28] Popp K., Stelter P.: Stick-slip vibrations and chaos.Philos. Trans. R. Soc. London A 332 (1990), 89–105 Zbl 0709.70019
Reference: [29] Reissig R.: Erzwungene Schwingungen mit zäher Dämpfung und starker Gleitreibung. II..Math. Nachr. 12 (1954), 119–128 MR 0069996
Reference: [30] Reissig R.: Über die Stabilität gedämpfter erzwungener Bewegungen mit linearer Rückstellkraft.Math. Nachr. 13 (1955), 231–245 Zbl 0066.33503, MR 0078535
Reference: [31] Rumpel R. J.: Singularly perturbed relay control systems.preprint, 1996
Reference: [32] Rumpel R. J.: On the qualitative behaviour of nonlinear oscillators with dry friction.ZAMM 76 (1996), 665–666 Zbl 0900.34041
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_8.pdf 231.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo