Previous |  Up |  Next


Finite Elements; Shortley-Weller discretization; complicated boundary
In this paper a new finite element approach is presented which allows the discretization of PDEs on domains containing small micro-structures with extremely few degrees of freedom. The applications of these so-called Composite Finite Elements are two-fold. They allow the efficient use of multi-grid methods to problems on complicated domains where, otherwise, it is not possible to obtain very coarse discretizations with standard finite elements. Furthermore, they provide a tool for discrete homogenization of PDEs without requiring periodicity of the data.
[1] R. Bank, J. Xu. : An Algorithm for Coarsening Unstructured Meshes. Numer. Math., 73(1):1–36, 1996. MR 1379277 | Zbl 0857.65034
[2] R. E. Bank, J. Xu. : A Hierarchical Basis Multi-Grid Method for Unstructured Grids. In W. Hackbusch and G. Wittum, editors, Fast Solvers for Flow Problems, Proceedings of the Tenth GAMM-Seminar, Kiel. Verlag Vieweg, 1995. MR 1423810
[3] W. Hackbusch. : On the Multi-Grid Method Applied to Difference Equations. Computing, 20:291–306, 1978. Zbl 0391.65045
[4] W. Hackbusch. : Multi-Grid Methods and Applications. Springer Verlag, 1985. Zbl 0595.65106
[5] W. Hackbusch. : Elliptic Differential Equations. Springer Verlag, 1992. MR 1197118 | Zbl 0875.35032
[6] W. Hackbusch, S. Sauter. : Adaptive Composite Finite Elements for the Solution of PDEs Containing non-uniformly distributed Micro-Scales. Matematicheskoe Modelirovanie, 8(9):31–43, 1996. MR 1444870
[7] W. Hackbusch, S. Sauter. : Composite Finite Elements for Problems Containing Small Geometric Details. Part II: Implementation and Numerical Results. Computing and Visualization in Science, 1(1):15–25, 1997.
[8] W. Hackbusch, S. Sauter. : Composite Finite Elements for the Approximation of PDEs on Domains with Complicated Micro-Structures. Numer. Math., 75(4):447–472, 1997. MR 1431211 | Zbl 0874.65086
[9] R. Kornhuber, H. Yserentant. : Multilevel Methods for Elliptic Problems on Domains not Resolved by the Coarse Grid. Contemporay Mathematics, 180:49–60, 1994. MR 1312377 | Zbl 0817.65109
[10] V. Mikulinsky. : Multigrid Treatment of Boundary and Free-Boundary Conditions. PhD thesis, The Weizmann Institute of Science, Rehovot 76100, Israel, 1992.
[11] J. Ruge, K. Stüben. : Algebraic multigrid. In S. McCormick, editor, Multigrid Methods, pages 73–130, Pennsylvania, 1987. SIAM Philadelphia. MR 0972756
[12] S. Sauter. : Composite finite elements for problems with complicated boundary. Part III: Essential boundary conditions. Technical report, Lehrstuhl Praktische Mathematik, Universität Kiel, 1997. submitted to Computing and Visualization in Sciences.
[13] S. Sauter. : Vergröberung von Finite-Elemente-Räumen. Technical report, Universität Kiel, Germany, 1997. Habilitationsschrift.
[14] G. H. Shortley, R. Weller. : Numerical Solution of Laplace’s Equation. J. Appl. Phys., 9:334–348, 1938. Zbl 0019.03801
Partner of
EuDML logo