Previous |  Up |  Next

Article

Title: A new finite element approach for problems containing small geometric details (English)
Author: Hackbusch, W.
Author: Sauter, S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 105-117
Summary lang: English
.
Category: math
.
Summary: In this paper a new finite element approach is presented which allows the discretization of PDEs on domains containing small micro-structures with extremely few degrees of freedom. The applications of these so-called Composite Finite Elements are two-fold. They allow the efficient use of multi-grid methods to problems on complicated domains where, otherwise, it is not possible to obtain very coarse discretizations with standard finite elements. Furthermore, they provide a tool for discrete homogenization of PDEs without requiring periodicity of the data. (English)
Keyword: Finite Elements
Keyword: Shortley-Weller discretization
Keyword: complicated boundary
MSC: 65N15
MSC: 65N30
MSC: 65N50
MSC: 65Y20
MSC: 74A60
MSC: 74M25
MSC: 74S05
idZBL: Zbl 0912.65088
idMR: MR1629676
.
Date available: 2009-02-17T10:10:36Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107637
.
Reference: [1] R. Bank, J. Xu. : An Algorithm for Coarsening Unstructured Meshes.Numer. Math., 73(1):1–36, 1996. Zbl 0857.65034, MR 1379277
Reference: [2] R. E. Bank, J. Xu. : A Hierarchical Basis Multi-Grid Method for Unstructured Grids.In W. Hackbusch and G. Wittum, editors, Fast Solvers for Flow Problems, Proceedings of the Tenth GAMM-Seminar, Kiel. Verlag Vieweg, 1995. MR 1423810
Reference: [3] W. Hackbusch. : On the Multi-Grid Method Applied to Difference Equations.Computing, 20:291–306, 1978. Zbl 0391.65045
Reference: [4] W. Hackbusch. : Multi-Grid Methods and Applications.Springer Verlag, 1985. Zbl 0595.65106
Reference: [5] W. Hackbusch. : Elliptic Differential Equations.Springer Verlag, 1992. Zbl 0875.35032, MR 1197118
Reference: [6] W. Hackbusch, S. Sauter. : Adaptive Composite Finite Elements for the Solution of PDEs Containing non-uniformly distributed Micro-Scales.Matematicheskoe Modelirovanie, 8(9):31–43, 1996. MR 1444870
Reference: [7] W. Hackbusch, S. Sauter. : Composite Finite Elements for Problems Containing Small Geometric Details. Part II: Implementation and Numerical Results.Computing and Visualization in Science, 1(1):15–25, 1997.
Reference: [8] W. Hackbusch, S. Sauter. : Composite Finite Elements for the Approximation of PDEs on Domains with Complicated Micro-Structures.Numer. Math., 75(4):447–472, 1997. Zbl 0874.65086, MR 1431211
Reference: [9] R. Kornhuber, H. Yserentant. : Multilevel Methods for Elliptic Problems on Domains not Resolved by the Coarse Grid.Contemporay Mathematics, 180:49–60, 1994. Zbl 0817.65109, MR 1312377
Reference: [10] V. Mikulinsky. : Multigrid Treatment of Boundary and Free-Boundary Conditions.PhD thesis, The Weizmann Institute of Science, Rehovot 76100, Israel, 1992.
Reference: [11] J. Ruge, K. Stüben. : Algebraic multigrid.In S. McCormick, editor, Multigrid Methods, pages 73–130, Pennsylvania, 1987. SIAM Philadelphia. MR 0972756
Reference: [12] S. Sauter. : Composite finite elements for problems with complicated boundary. Part III: Essential boundary conditions.Technical report, Lehrstuhl Praktische Mathematik, Universität Kiel, 1997. submitted to Computing and Visualization in Sciences.
Reference: [13] S. Sauter. : Vergröberung von Finite-Elemente-Räumen.Technical report, Universität Kiel, Germany, 1997. Habilitationsschrift.
Reference: [14] G. H. Shortley, R. Weller. : Numerical Solution of Laplace’s Equation.J. Appl. Phys., 9:334–348, 1938. Zbl 0019.03801
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_11.pdf 253.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo