Previous |  Up |  Next

Article

Title: On small solutions of second order differential equations with random coefficients (English)
Author: Hatvani, László
Author: Stachó, László
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 119-126
Summary lang: English
.
Category: math
.
Summary: We consider the equation \[x^{\prime \prime }+a^2(t)x=0,\qquad a(t):=a_k\ \hbox{ if }t_{k-1}\le t<t_k,\ \hbox{ for }k=1,2,\ldots ,\] where $\lbrace a_k\rbrace $ is a given increasing sequence of positive numbers, and $\lbrace t_k\rbrace $ is chosen at random so that $\lbrace t_k-t_{k-1}\rbrace $ are totally independent random variables uniformly distributed on interval $[0,1]$. We determine the probability of the event that all solutions of the equation tend to zero as $t\rightarrow \infty $. (English)
Keyword: Asymptotic stability
Keyword: energy method
Keyword: small solution
MSC: 34D20
MSC: 34F05
MSC: 60H10
MSC: 60K40
idZBL: Zbl 0915.34051
idMR: MR1629680
.
Date available: 2009-02-17T10:10:41Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107638
.
Reference: [1] V. I. Arnold: Mathematical Methods of Classical Mechanics.Springer-Verlag, New York, 1989. MR 0997295
Reference: [2] M. Biernacki: Sur l’équation différentielle $x^{\prime \prime }+A(t)x=0$.Prace Mat.-Fiz., 40 (1933), 163–171. Zbl 0006.20001
Reference: [3] T. A. Burton, J. W. Hooker: On solutions of differential equations tending to zero.J. Reine Angew. Math., 267 (1974), 154–165. Zbl 0298.34042, MR 0348204
Reference: [4] Kai Lai Chung: A Course in Probability Theory.Academic Press, New York, 1974. MR 0346858
Reference: [5] Á. Elbert: Stability of some difference equations.In Advances in Difference Equations (Proceedings of the Second International Conference on Difference Equations, Veszprém, Hungary, August 7–11, 1995), Gordon and Breach Science Publisher, London, 1997; 165–187. MR 1636322
Reference: [6] Á. Elbert: On asymptotic stability of some Sturm-Liouville differential equations.General Seminar of Mathematics, University of Patras, 22-23 (1996/97), (to appear).
Reference: [7] J. R. Graef, J. Karsai: On irregular growth and impulses in oscillator equations.In Advances in Difference Equations (Proceedings of the Second International Conference on Difference Equations, Veszprém, Hungary, August 7–11, 1995), Gordon and Breach Science Publisher, London, 1997; 253–262. MR 1636328
Reference: [8] P. Hartman: On a theorem of Milloux.Amer. J. Math., 70 (1948), 395–399. Zbl 0035.18204, MR 0026194
Reference: [9] P. Hartman: The existence of large or small solutions of linear differential equation.Duke Math. J., 28 (1961), 421–430. MR 0130432
Reference: [10] P. Hartman: Ordinary Differential Equations.Wiley, New York, 1964. Zbl 0125.32102, MR 0171038
Reference: [11] L. Hatvani: On the asymptotic stability by nondecrescent Lyapunov function.Nonlinear Anal., 8 (1984), 67–77. Zbl 0534.34054, MR 0732416
Reference: [12] L. Hatvani: On the existence of a small solution to linear second order differential equations with step function coefficients.Differential and Integral Equations, (to appear). Zbl 0916.34013, MR 1639105
Reference: [13] I. T. Kiguradze, T. A. Chanturia: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer Acad. Publ., Dordrecht, 1993. Zbl 0782.34002, MR 1220223
Reference: [14] J. W. Macki: Regular growth and zero-tending solutions.In Ordinary Differential Equations and Operators, Lecture Notes of Math. 1032, Springer-Verlag, Berlin, 1982; 358–374. MR 0742649
Reference: [15] H. Milloux: Sur l’équation différentielle $x^{\prime \prime }+A(t)x=0$.Prace Mat.-Fiz., 41 (1934), 39–54. Zbl 0009.16402
Reference: [16] P. Pucci, and J. Serrin: Asymptotic stability for ordinary differential systems with time dependent restoring potentials.Archive Rat. Mech. Anal., 132 (1995), 207–232. MR 1365829
Reference: [17] J. Terjéki: On the conversion of a theorem of Milloux, Prodi and Trevisan.In Differential Equations, Lecture Notes in Pure and Appl. Math. 118, Springer-Verlag, Berlin, 1987; 661–665. MR 1021771
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_12.pdf 215.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo