Previous |  Up |  Next

Article

Title: Quadratic functionals: positivity, oscillation, Rayleigh's principle (English)
Author: Kratz, Werner
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 143-151
Summary lang: English
.
Category: math
.
Summary: In this paper we give a survey on the theory of quadratic functionals. Particularly the relationships between positive definiteness and the asymptotic behaviour of Riccati matrix differential equations, and between the oscillation properties of linear Hamiltonian systems and Rayleigh’s principle are demonstrated. Moreover, the main tools form control theory (as e.g. characterization of strong observability), from the calculus of variations (as e.g. field theory and Picone’s identity), and from matrix analysis (as e.g. l’Hospital’s rule for matrices) are discussed. (English)
Keyword: Quadratic functional
Keyword: Hamiltonian system
Keyword: Riccati equation
Keyword: oscillation
Keyword: observability
Keyword: Rayleigh’s principle
Keyword: eigenvalue problem
Keyword: linear control system
MSC: 34C10
MSC: 34H05
MSC: 49K15
MSC: 49N10
MSC: 93B07
MSC: 93C05
MSC: 93C15
idZBL: Zbl 0921.49025
idMR: MR1629688
.
Date available: 2009-02-17T10:10:50Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107640
.
Reference: [1] C. D. Ahlbrandt: Equivalence of discrete Euler equations and discrete Hamiltonian systems.J. Math. Anal. Appl., 180 (1993), 498–517. Zbl 0802.39005, MR 1251872
Reference: [2] C. D. Ahlbrandt S. L. Clark J. W. Hooker W. T. Patula: A discrete interpretation of Reid’s roundabout theorem for generalized differential systems.In: Computers and Mathematics with Applications, Comput. Math. Appl., 28 (1994), 11–21. MR 1284216
Reference: [3] H. W. Alt: Lineare Funktionalanalysis.Springer Verlag, Berlin, 1985. Zbl 0577.46001
Reference: [4] M. Bohner: Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions.J. Math. Anal. Appl., 199 (1996), 804–826. MR 1386607
Reference: [5] Z. Došlá O. Došlý: Quadratic functionals with general boundary conditions.Appl. Math. Optim., 36 (1997), 243–262. MR 1457870
Reference: [6] J. Klamka: Controllability of dynamical systems.Kluwer, Dordrecht, 1991. Zbl 0732.93008, MR 1134783
Reference: [7] W. Kratz: A substitute of l’Hospital’s rule for matrices.Proc. Amer. Math. Soc., 99 (1987), 395–402. Zbl 0629.15014, MR 0875370
Reference: [8] W. Kratz: A limit theorem for monotone matrix functions.Linear Algebra Appl., 194 (1993), 205–222. MR 1243829
Reference: [9] W. Kratz: The asymptotic behaviour of Riccati matrix differential equations.Asymptotic Anal., 7 (1993), 67–80. Zbl 0774.34034, MR 1216453
Reference: [10] W. Kratz: On the optimal linear regulator.Intern. J. Control, 60 (1994), 1005–1013. Zbl 0836.49017, MR 1301896
Reference: [11] W. Kratz: An index theorem for monotone matrix-valued functions.SIAM J. Matrix Anal. Appl., 16 (1995), 113–122. Zbl 0820.47012, MR 1311421
Reference: [12] W. Kratz: Characterization of strong observability and construction of an observer.Linear Algebra Appl., 221 (1995), 31–40. Zbl 0821.93017, MR 1331787
Reference: [13] W. Kratz: Quadratic functionals in variational analysis and control theory.Akademie Verlag, Berlin, 1995. Zbl 0842.49001, MR 1334092
Reference: [14] W. Kratz D. Liebscher: A local characterization of observability.Linear Algebra Appl., (1998), to appear. MR 1483524
Reference: [15] W. Kratz D. Liebscher R. Schätzle: On the definiteness of quadratic functionals.Ann. Mat. Pura Appl. (4), (1998), to appear. MR 1746539
Reference: [16] M. Morse: Variational analysis: Critical extremals and Sturmian theory.Wiley, New York, 1973.
Reference: [17] M. Picone: Sulle autosoluzioni e sulle formule di maggiorazione per gli integrali delle equazioni differenziali lineari ordinarie autoaggiunte.Math. Z., 28 (1928), 519–555. MR 1544975
Reference: [18] W. T. Reid: Ordinary differential equations.Wiley, New York, 1971. Zbl 0212.10901, MR 0273082
Reference: [19] W. T. Reid: Riccati differential equations.Academic Press, London, 1972. Zbl 0254.34003, MR 0357936
Reference: [20] J. Simon: Compact sets in the space $L^p(0,t;B)$.Annali di Matematica Pura ed Applicata, 146 (1987), 65–96. MR 0916688
Reference: [21] S. A. Swanson: Picone’s identity.Rend. Math., 8 (1975), 373–397. Zbl 0327.34028, MR 0402188
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_14.pdf 238.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo