Previous |  Up |  Next

Article

Title: Invariant measures for nonlinear SPDE's: uniqueness and stability (English)
Author: Maslowski, Bohdan
Author: Seidler, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 153-172
Summary lang: English
.
Category: math
.
Summary: The paper presents a review of some recent results on uniqueness of invariant measures for stochastic differential equations in infinite-dimensional state spaces, with particular attention paid to stochastic partial differential equations. Related results on asymptotic behaviour of solutions like ergodic theorems and convergence of probability laws of solutions in strong and weak topologies are also reviewed. (English)
Keyword: Stochastic evolution equations
Keyword: invariant measures
Keyword: ergodic theorems
Keyword: stability
MSC: 35R60
MSC: 47D07
MSC: 60H15
idZBL: Zbl 0914.60028
idMR: MR1629692
.
Date available: 2009-02-17T10:10:54Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107641
.
Reference: [1] S. Albeverio V. Bogachev M. Röckner: On uniqueness of invariant measures for finite and infinite dimensional diffusions.Universität Bielefeld, SFB 343, Preprint 97–057
Reference: [2] S. Albeverio, Yu. G. Kondratiev M. Röckner: Ergodicity of $L^2$-semigroups and extremality of Gibbs states.J. Funct. Anal. 144 (1997), 394–423 MR 1432591
Reference: [3] S. Albeverio, Yu. G. Kondratiev M. Röckner: Ergodicity for the stochastic dynamics of quasi-invariant measures with applications to Gibbs states.J. Funct. Anal. 149 (1997), 415–469 MR 1472365
Reference: [4] A. Bensoussan A. Răşcanu: Large time behaviour for parabolic stochastic variational inequalities.An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 42 (1996), 149–173 MR 1608249
Reference: [5] V. I. Bogachev N. Krylov M. Röckner: Regularity of invariant measures: the case of non-constant diffusion part.J. Funct. Anal. 138 (1996), 223–242 MR 1391637
Reference: [6] V. I. Bogachev M. Röckner: Regularity of invariant measures in finite and infinite dimensional spaces and applications.J. Funct. Anal. 133 (1995), 168–223 MR 1351647
Reference: [7] V. Bogachev M. Röckner T. S. Zhang: Existence and uniqueness of invariant measures: an approach via sectorial forms.Universität Bielefeld, SFB 343, Preprint 97–072
Reference: [8] A. Chojnowska-Michalik B. Goldys: Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces.Probab. Theory Related Fields 102 (1995), 331-356 MR 1339737
Reference: [9] I. D. Chueshov T. V. Girya: Inertial manifolds and forms for semilinear parabolic equations subjected to additive noise.Lett. Math. Phys. 34 (1995), 69–76 MR 1334036
Reference: [10] G. Da Prato A. Debussche: Stochastic Cahn-Hilliard equation.Nonlinear Anal. 26 (1996), 241–263 MR 1359472
Reference: [11] G. Da Prato K. D. Elworthy J. Zabczyk: Strong Feller property for stochastic semilinear equations.Stochastic Anal. Appl. 13 (1995), 35–45 MR 1313205
Reference: [12] G. Da Prato D. Gątarek: Stochastic Burgers equation with correlated noise.Stochastics Stochastics Rep. 52 (1995), 29–41 MR 1380259
Reference: [13] G. Da Prato D. Gątarek J. Zabczyk: Invariant measures for semilinear stochastic equations.Stochastic Anal. Appl. 10 (1992), 387–408 MR 1178482
Reference: [14] G. Da Prato D. Nualart J. Zabczyk: Strong Feller property for infinite-dimensional stochastic equations.Scuola Normale Superiore Pisa, Preprints di Matematica n. 33/1994
Reference: [15] G. Da Prato J. Zabczyk: Smoothing properties of transition semigroups in Hilbert spaces.Stochastics Stochastics Rep. 35 (1991), 63–77 MR 1110991
Reference: [16] G. Da Prato J. Zabczyk: Non-explosion, boundedness and ergodicity for stochastic semilinear equations.J. Differential Equations 98 (1992), 181–195 MR 1168978
Reference: [17] G. Da Prato J. Zabczyk: On invariant measure for semilinear equations with dissipative nonlinearities.Stochastic partial differential equations and their applications (Charlotte, 1991), 38–42, Lecture Notes in Control Inform. Sci. 176, Springer 1992 MR 1176769
Reference: [18] G. Da Prato J. Zabczyk: Stochastic equations in infinite dimensions.Cambridge University Press, Cambridge 1992 MR 1207136
Reference: [19] G. Da Prato J. Zabczyk: Convergence to equilibrium for classical and quantum spin systems.Probab. Theory Related Fields 103 (1995), 529–552 MR 1360204
Reference: [20] G. Da Prato J. Zabczyk: Ergodicity for infinite dimensional systems.Cambridge University Press, Cambridge 1996 MR 1417491
Reference: [21] J. L. Doob: Asymptotic properties of Markoff transition probabilities.Trans. Amer. Math. Soc. 63 (1948), 393–421 Zbl 0041.45406, MR 0025097
Reference: [22] M. Duflo D. Revuz: Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents.Ann. Inst. H. Poincaré Probab. Statist. 5 (1969), 233–244 MR 0273680
Reference: [23] B. Ferrario: Ergodic results for stochastic Navier-Stokes equation.Stochastics Stochastics Rep. 60 (1997), 271–288 Zbl 0882.60059, MR 1467721
Reference: [24] F. Flandoli B. Maslowski: Ergodicity of the 2–D Navier-Stokes equation under random perturbations.Comm. Math. Phys. 171 (1995), 119–141 MR 1346374
Reference: [25] M. I. Freidlin: Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation.Trans. Amer. Math. Soc. 305 (1988), 665–697 Zbl 0673.35049, MR 0924775
Reference: [26] M. Fuhrman: Smoothing properties of nonlinear stochastic equations in Hilbert spaces.NODEA Nonlinear Differential Equations Appl. 3 (1996), 445–464 Zbl 0866.60050, MR 1418590
Reference: [27] D. Gątarek B. Gołdys: Existence, uniqueness and ergodicity for the stochastic quantization equation.Studia Math. 119 (1996), 179–193 MR 1391475
Reference: [28] D. Gątarek B. Goldys: On invariant measures for diffusions on Banach spaces.Potential Anal. 7 (1997), 539–553 MR 1467205
Reference: [29] T. V. Girya: On stabilization of solutions to nonlinear stochastic parabolic equations.Ukrain. Mat. Zh. 41 (1989), 1630–1636 (in Russian) MR 1042959
Reference: [30] T. V. Girya I. D. Khueshov: Inertial manifolds and stationary measures for dissipative dynamical systems with a random perturbation.Mat. Sb. 186 (1995), 29–46 (in Russian) MR 1641664
Reference: [31] Hu Xuanda: Boundedness and invariant measures of semilinear stochastic evolution equations.Nanjing Daxue Xuebao Shuxue Bannian Kan 4 (1987), 1–14 Zbl 0652.60065, MR 0916950
Reference: [32] A. Ichikawa: Semilinear stochastic evolution equations: Boundedness, stability and invariant measures.Stochastics 12 (1984), 1–39 Zbl 0538.60068, MR 0738933
Reference: [33] Ya. Sh. Il’yasov A. I. Komech: The Girsanov theorem and ergodic properties of statistical solutions to nonlinear parabolic equations.Trudy Sem. Petrovskogo 12 (1987), 88–117 (in Russian) MR 0933054
Reference: [34] S. Jacquot: Strong ergodicity results on Wiener space.Stochastics Stochastics Rep. 51 (1994), 133–154 Zbl 0851.60059, MR 1380766
Reference: [35] S. Jacquot: Simulated annealing for stochastic semilinear equations in Hilbert spaces.Stochastic Process. Appl. 64 (1996), 73–91 MR 1419493
Reference: [36] S. Jacquot G. Royer: Ergodicité d’une classe d’équations aux dérivées partielles stochastiques.C. R. Acad. Sci. Paris Sér. Math. 320 (1995), 231–236 MR 1320362
Reference: [37] R. Z. Khas’minskiĭ: Ergodic properties of recurrent diffusion processes and stabilization of solutions to the Cauchy problem for parabolic equations.Teor. Veroyatnost. i Primenen. 5 (1960), 196–214 (in Russian) MR 0133871
Reference: [38] R. Z. Khas’minskiĭ: Stability of systems of differential equations under random perturbations of their parameters.Nauka, Moskva 1969 (in Russian); English translation: Stochastic stability of differential equations, Sijthoff & Noordhoff, Alphen aan den Rijn 1980
Reference: [39] Yu. G. Kondratiev S. Roelly H. Zessin: Stochastic dynamics for an infinite system of random closed strings: A Gibbsian point of view.Stochastic Process. Appl. 61 (1996), 223–248 MR 1386174
Reference: [40] S. M. Kozlov: Some problems concerning stochastic partial differential equations.Trudy Sem. Petrovskogo 4 (1978), 147–172 (in Russian) MR 0524530
Reference: [41] H.-H. Kuo: Gaussian measures in Banach spaces.Lecture Notes in Math. 463, Berlin 1975 Zbl 0306.28010, MR 0461643
Reference: [42] G. Leha G. Ritter: Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces.Stochastics Stochastics Rep. 48 (1994), 195–225 MR 1782748
Reference: [43] G. Leha G. Ritter: Stationary distributions of diffusion processes with singular drift on Hilbert spaces.in preparation
Reference: [44] R. Manthey B. Maslowski: Qualitative behaviour of solutions of stochastic reaction-diffusion equations.Stochastic Process. Appl. 43 (1992), 265–289 MR 1191151
Reference: [45] R. Marcus: Parabolic Itô equations.Trans. Amer. Math. Soc. 198 (1974), 177–190 MR 0346909
Reference: [46] R. Marcus: Parabolic Itô equations with monotone nonlinearities.J. Funct. Anal. 29 (1978), 275–286 Zbl 0397.47034, MR 0512245
Reference: [47] R. Marcus: Stochastic diffusion on an unbounded domain.Pacific J. Math. 84 (1979), 143–153 Zbl 0423.60056, MR 0559632
Reference: [48] G. Maruyama H. Tanaka: Ergodic property of $N$-dimensional recurrent Markov processes.Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157–172 MR 0112175
Reference: [49] B. Maslowski: Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces.Stochastics Stochastics Rep. 28 (1989), 85–114 Zbl 0683.60037, MR 1018545
Reference: [50] B. Maslowski: Strong Feller property for semilinear stochastic evolution equations and applications.Stochastic systems and optimization (Warsaw, 1988), 210–224, Lecture Notes in Control Inform. Sci. 136, Springer-Verlag, Berlin 1989 MR 1180781
Reference: [51] B. Maslowski: On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise.Stochastic processes and related topics (Georgenthal, 1990), 93–102, Akademie-Verlag, Berlin 1991 MR 1127885
Reference: [52] B. Maslowski: On probability distributions of solutions of semilinear stochastic evolution equations.Stochastics Stochastics Rep. 45 (1993), 17–44 Zbl 0792.60058, MR 1277360
Reference: [53] B. Maslowski: Stability of semilinear equations with boundary and pointwise noise.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 55–93 Zbl 0830.60056, MR 1315350
Reference: [54] B. Maslowski: Asymptotic properties of stochastic equations with boundary and pointwise noise.Stochastic processes and related topics (Siegmundsburg, 1994), 67–76, Gordon and Breach, Amsterdam 1996 MR 1393497
Reference: [55] B. Maslowski J. Seidler: Ergodic properties of recurrent solutions of stochastic evolution equations.Osaka J. Math. 31 (1994), 965–1003 MR 1315015
Reference: [56] B. Maslowski J. Seidler: Probabilistic approach to the strong Feller property.in preparation
Reference: [57] B. Maslowski I. Simão: Asymptotic properties of stochastic semilinear equations by method of lower measures.Colloq. Math. 79 (1997), 147–171 MR 1425551
Reference: [58] S. Mück: Semilinear stochastic equations for symmetric diffusions.Stochastics Stochastics Rep., to appear (1998) MR 1613264
Reference: [59] C. Mueller: Coupling and invariant measures for the heat equation with noise.Ann. Probab. 21 (1993), 2189–2199 Zbl 0795.60056, MR 1245306
Reference: [60] S. Peszat J. Zabczyk: Strong Feller property and irreducibility for diffusions on Hilbert spaces.Ann. Probab. 23 (1995), 157–172 MR 1330765
Reference: [61] J. Seidler: Ergodic behaviour of stochastic parabolic equations.Czechoslovak Math. J. 47 (122) (1997), 277–316 Zbl 0935.60041, MR 1452421
Reference: [62] R. Sowers: Large deviations for the invariant measure of a reaction-diffusion equation with non-Gaussian perturbations.Probab. Theory Related Fields 92 (1994), 393–421 MR 1165518
Reference: [63] Ł. Stettner: Remarks on ergodic conditions for Markov processes on Polish spaces.Bull. Polish Acad. Sci. Math. 42 (1994), 103–114 Zbl 0815.60072, MR 1810695
Reference: [64] D. W. Stroock: Logarithmic Sobolev inequality for Gibbs states.Dirichlet forms (Varenna, 1992), 194–228, Lecture Notes in Math. 1563, Springer-Verlag, Berlin 1993 MR 1292280
Reference: [65] M. J. Vishik A. V. Fursikov: Mathematical problems of stochastic hydromechanics.Kluwer Academic Publishers, Dordrecht 1988
Reference: [66] J. Zabczyk: Structural properties and limit behaviour of linear stochastic systems in Hilbert spaces.Mathematical control theory, 591–609, Banach Center Publications Vol. 14, PWN, Warsaw 1985 Zbl 0573.93076, MR 0851253
Reference: [67] B. Zegarlinski: Ergodicity of Markov semigroups.Stochastic partial differential equations (Edinburgh, 1994), 312–337, Cambridge University Press, Cambridge 1995 MR 1352750
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_15.pdf 359.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo