Previous |  Up |  Next

Article

Title: Transition from decay to blow-up in a parabolic system (English)
Author: Quittner, Pavol
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 199-206
Summary lang: English
.
Category: math
.
Summary: We show a locally uniform bound for global nonnegative solutions of the system $u_t=\Delta u+uv-bu$, $v_t=\Delta v+au$ in $(0,+\infty )\times \Omega $, $u=v=0$ on $(0,+\infty )\times \partial \Omega $, where $a>0$, $b\ge 0$ and $\Omega $ is a bounded domain in $\mathbb {R}^n$, $n\le 2$. In particular, the trajectories starting on the boundary of the domain of attraction of the zero solution are global and bounded. (English)
Keyword: Blow-up
Keyword: global existence
Keyword: apriori estimates
MSC: 35B40
MSC: 35K50
MSC: 35K60
idZBL: Zbl 0911.35062
idMR: MR1629705
.
Date available: 2009-02-17T10:11:13Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107645
.
Reference: [1] H. Brézis, R. E. L. Turner: On a class of superlinear elliptic problems.Comm. Partial Differ. Equations, 2 (1977), 601–614 MR 0509489
Reference: [2] M. Fila: Boundedness of global solutions of nonlinear diffusion equations.J. Differ. Equations, 98 (1992), 226–240 Zbl 0764.35010, MR 1170469
Reference: [3] M. Fila, H. Levine: On the boundedness of global solutions of abstract semi-linear parabolic equations.J. Math. Anal. Appl., 216 (1997), 654–666 MR 1489604
Reference: [4] Y. Giga: A bound for global solutions of semilinear heat equations.Comm. Math. Phys., 103 (1986), 415–421 Zbl 0595.35057, MR 0832917
Reference: [5] V. Galaktionov, J. L. Vázquez: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions.Comm. Pure Applied Math., 50 (1997), 1–67 MR 1423231
Reference: [6] T. Gu, M. Wang: Existence of positive stationary solutions and threshold results for a reaction-diffusion system.J. Diff. Equations, 130, (1996), 277–291 Zbl 0858.35059, MR 1410888
Reference: [7] P. Quittner: Global solutions in parabolic blow-up problems with perturbations.Proc. 3rd European Conf. on Elliptic and Parabolic Problems, Pont-à-Mousson 1997, (to appear) MR 1628115
Reference: [8] P. Quittner: Signed solutions for a semilinear elliptic problem.Differential and Integral Equations, (to appear) Zbl 1131.35339, MR 1666269
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_19.pdf 214.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo