Previous |  Up |  Next

Article

Title: Dynamical systems with several equilibria and natural Liapunov functions (English)
Author: Răsvan, Vladimir
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 207-215
Summary lang: English
.
Category: math
.
Summary: Dynamical systems with several equilibria occur in various fields of science and engineering: electrical machines, chemical reactions, economics, biology, neural networks. As pointed out by many researchers, good results on qualitative behaviour of such systems may be obtained if a Liapunov function is available. Fortunately for almost all systems cited above the Liapunov function is associated in a natural way as an energy of a certain kind and it is at least nonincreasing along systems solutions. (English)
Keyword: Several equilibria
Keyword: qualitative behaviour
Keyword: Liapunov function Introduction Dynamical systems with several equilibria occur in various fields of science and engineering: electrical machines
Keyword: chemical reactions
Keyword: economics
Keyword: biology
Keyword: neural networks
MSC: 34C11
MSC: 34C99
MSC: 34D20
MSC: 37-99
idZBL: Zbl 0915.34043
idMR: MR1629709
.
Date available: 2009-02-17T10:11:17Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107646
.
Reference: [1] M. Cohen S. Grossberg: Absolute Stability of Global Pattern Formation and Parallel Memory Storage by Competitive Neural Networks.IEEE Trans. on Syst. Man Cybernetics, SMC-13, (1983), 815–826. MR 0730500
Reference: [2] D. A. Frank Kamenetskii: Diffusion and heat transfer in chemical kinetics.(in Russian), Nauka, Moscow 1987.
Reference: [3] A. Kh. Gelig G. A. Leonov V. A. Yakubovich: Stability of systems with non-unique equilibria.(in Russian), Nauka, Moscow 1978. MR 0519679
Reference: [4] A. Halanay, Vl. Răsvan: Applications of Liapunov Methods to Stability.Kluwer 1993.
Reference: [5] M. Hirsch: Systems of differential equations which are competitive or cooperative. I-Limit sets.SIAM J. Math. Anal, 13, 2, (1982), 167–169. Zbl 0494.34017, MR 0647119
Reference: M. Hirsch: Systems of differential equations which are competitive or cooperative. II-Convergence almost everywhere.SIAM J. Math. Anal, 16, 3, (1985), 423–439. MR 0783970
Reference: [6] M. Hirsch: Stability and convergence in strongly monotone dynamical systems.J. reine angew. Mathem., 383, (1988), 1–53. Zbl 0624.58017, MR 0921986
Reference: [7] R. E. Kalman: Physical and mathematical mechanisms of instability in nonlinear automatic control systems.Trans. ASME, 79 (1957), no. 3 MR 0088420
Reference: [8] S. N. Kružkov A. N. Peregudov: The Cauchy problem for a system of quasilinear parabolic equations of chemical kinetics type.Journ. of Math. Sci., 69, 3, (1994), 1110–1125. MR 1275290
Reference: [9] G. A. Leonov V. Reitmann V. B. Smirnova: Non-local methods for pendulum-like feedback systems.Teubner Verlag 1992. MR 1216519
Reference: [10] J. Moser: On nonoscillating networks.Quart. of Appl. Math., 25 (1967), 1–9. Zbl 0154.34803, MR 0209567
Reference: [11] V. M. Popov: Monotonicity and Mutability.J. of Diff. Eqs., 31 (1979), 337–358. Zbl 0368.45008, MR 0530933
Reference: [12] P. Simon H. Farkas: Globally attractive domains in two-dimensional reversible chemical, dynamical systems.Ann. Univ. Sci. Budapest, Sect. Comp., 15 (1995), 179–200. MR 1428282
Reference: [13] Iu. M. Svirežev: .Appendix to the Russian edition of [14], Nauka, Moscow 1976.
Reference: [14] V. Volterra: Leçons sur la théorie mathématique de la lutte pour la vie.Gauthier Villars et Cie, Paris 1931. Zbl 0002.04202
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_20.pdf 221.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo