Full entry |
PDF
(0.2 MB)
Feedback

Several equilibria; qualitative behaviour; Liapunov function Introduction Dynamical systems with several equilibria occur in various fields of science and engineering: electrical machines; chemical reactions; economics; biology; neural networks

References:

[1] M. Cohen S. Grossberg: **Absolute Stability of Global Pattern Formation and Parallel Memory Storage by Competitive Neural Networks**. IEEE Trans. on Syst. Man Cybernetics, SMC-13, (1983), 815–826. MR 0730500

[2] D. A. Frank Kamenetskii: **Diffusion and heat transfer in chemical kinetics**. (in Russian), Nauka, Moscow 1987.

[3] A. Kh. Gelig G. A. Leonov V. A. Yakubovich: **Stability of systems with non-unique equilibria**. (in Russian), Nauka, Moscow 1978. MR 0519679

[4] A. Halanay, Vl. Răsvan: **Applications of Liapunov Methods to Stability**. Kluwer 1993.

[5] M. Hirsch: **Systems of differential equations which are competitive or cooperative. I-Limit sets**. SIAM J. Math. Anal, 13, 2, (1982), 167–169. MR 0647119 | Zbl 0494.34017

M. Hirsch: **Systems of differential equations which are competitive or cooperative. II-Convergence almost everywhere**. SIAM J. Math. Anal, 16, 3, (1985), 423–439. MR 0783970

[6] M. Hirsch: **Stability and convergence in strongly monotone dynamical systems**. J. reine angew. Mathem., 383, (1988), 1–53. MR 0921986 | Zbl 0624.58017

[7] R. E. Kalman: **Physical and mathematical mechanisms of instability in nonlinear automatic control systems**. Trans. ASME, 79 (1957), no. 3 MR 0088420

[8] S. N. Kružkov A. N. Peregudov: **The Cauchy problem for a system of quasilinear parabolic equations of chemical kinetics type**. Journ. of Math. Sci., 69, 3, (1994), 1110–1125. MR 1275290

[9] G. A. Leonov V. Reitmann V. B. Smirnova: **Non-local methods for pendulum-like feedback systems**. Teubner Verlag 1992. MR 1216519

[10] J. Moser: **On nonoscillating networks**. Quart. of Appl. Math., 25 (1967), 1–9. MR 0209567 | Zbl 0154.34803

[11] V. M. Popov: **Monotonicity and Mutability**. J. of Diff. Eqs., 31 (1979), 337–358. MR 0530933 | Zbl 0368.45008

[12] P. Simon H. Farkas: **Globally attractive domains in two-dimensional reversible chemical, dynamical systems**. Ann. Univ. Sci. Budapest, Sect. Comp., 15 (1995), 179–200. MR 1428282

[13] Iu. M. Svirežev: Appendix to the Russian edition of [14], Nauka, Moscow 1976.

[14] V. Volterra: **Leçons sur la théorie mathématique de la lutte pour la vie**. Gauthier Villars et Cie, Paris 1931. Zbl 0002.04202