Title:
|
Boundary layer for Chaffee-Infante type equation (English) |
Author:
|
Temam, Roger |
Author:
|
Wang, Xiaoming |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
34 |
Issue:
|
1 |
Year:
|
1998 |
Pages:
|
217-226 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This article is concerned with the nonlinear singular perturbation problem due to small diffusivity in nonlinear evolution equations of Chaffee-Infante type. The boundary layer appearing at the boundary of the domain is fully described by a corrector which is “explicitly" constructed. This corrector allows us to obtain convergence in Sobolev spaces up to the boundary. (English) |
Keyword:
|
Boundary layers |
Keyword:
|
correctors |
Keyword:
|
nonlinear reaction diffusion equations |
Keyword:
|
chaffee-infante equation |
MSC:
|
35B10 |
MSC:
|
35B25 |
MSC:
|
35B40 |
MSC:
|
35C20 |
MSC:
|
35K57 |
MSC:
|
76D10 |
idZBL:
|
Zbl 0911.35012 |
idMR:
|
MR1629713 |
. |
Date available:
|
2009-02-17T10:11:22Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107647 |
. |
Reference:
|
[1] S. N. Alekseenko: Existence and asymptotic representation of weak solutions to the flowing problem under the condition of regular slippage on solid walls.Siberian Math. J. 35, 2 (1994), 209–229 Zbl 0856.35099, MR 1288259 |
Reference:
|
[2] R. Balian, J. L. Peube, ed.: Fluid dynamics.Cours de l’École d’Été de Physique Théorique, Les Houches, Gordon and Breach Science Publishers, New-York (1977) Zbl 0348.00025, MR 0495783 |
Reference:
|
[3] O. V. Besov V. P. Il’in, S. M. Nikol’skii: Integral representations of functions and imbedding theorems.Vol I, English translation edited by M.H. Taibleson, J. Wiley, New York (1978) MR 0519341 |
Reference:
|
[4] W. Eckhaus: Asymptotic Analysis of Singular Perturbations.North-Holland (1979) Zbl 0421.34057, MR 0553107 |
Reference:
|
[5] P. Germain: Méthodes Asymptotiques en Mécanique des Fluides.in [2] Zbl 0387.76001 |
Reference:
|
[6] O. A. Ladyzhenskaya: The mathematical theory of viscous incompressible flows.$2^{\text{nd}}$ ed., Gordon and Breach, New York (1969) MR 0254401 |
Reference:
|
[7] P. Lagerström: Matched Asymptotics Expansion, Ideas and Techniques.Springer-Verlag, New York (1988) MR 0958913 |
Reference:
|
[8] J. L. Lions: Perturbations singulières dans les problèmes aux limites et en controle optimal.Lecture Notes in Math 323, Springer-Verlag, New York (1973) Zbl 0268.49001, MR 0600331 |
Reference:
|
[9] H. K. Moffatt: Six lectures on general fluid dynamics and two on hydromagnetic dynamo theory.in [2] Zbl 0367.76001 |
Reference:
|
[10] O. Oleinik: The Prandtl system of equations in boundary layer theory.Dokl. Akad. Nauk SSSR 150 4(3) (1963), 583–586 MR 0153979 |
Reference:
|
[11] N. C. Owen J. Rubinstein, P. Sternberg: Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition.Proc. R. Soc. Lond. A 429 (1990), 505–532 MR 1057968 |
Reference:
|
[12] J. Rubinstein, P. Sternberg: On the slow motion of vortices in the Ginzburg-Landau heat flow.SIAM J. Math. Anal. 26 (1995), no 6, 1452–1466 Zbl 0838.35102, MR 1356453 |
Reference:
|
[13] R. Temam: Infinite Dimensional Dynamical Systems in Mechanics and Physics.$2^{\text{nd}}$ edition, Springer-Verlag, New York, Berlin (1997) Zbl 0871.35001, MR 1441312 |
Reference:
|
[14] R. Temam, X. Wang: Asymptotic analysis of Oseen Type Equations in a Channel at Small Viscosity.IU Math. J. 45 (1996), no.3, 863–916 Zbl 0881.35097, MR 1422110 |
Reference:
|
[15] R. Temam, X. Wang: On the behavior of the Navier-Stokes equations at vanishing viscosity.volume dedicated to the memory of E. De Giorgi, Annali della Scuola Normale Superiore di Pisa (to appear) |
Reference:
|
[16] R. Temam, X. Wang: Boundary Layers for Oseen’s Type Equation in Space Dimension Three.Russian Journal of Mathematical Physics 5 (1997), no. 2, 227–246 Zbl 0912.35125, MR 1491635 |
Reference:
|
[17] M. I. Vishik, L. A. Lyusternik: Regular degeneration and boundary layer for linear differential equations with small parameter.Uspekki Mat. Nauk 12 (1957), 3–122 Zbl 0087.29602, MR 0096041 |
. |