Previous |  Up |  Next


Title: Boundary layer for Chaffee-Infante type equation (English)
Author: Temam, Roger
Author: Wang, Xiaoming
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 217-226
Summary lang: English
Category: math
Summary: This article is concerned with the nonlinear singular perturbation problem due to small diffusivity in nonlinear evolution equations of Chaffee-Infante type. The boundary layer appearing at the boundary of the domain is fully described by a corrector which is “explicitly" constructed. This corrector allows us to obtain convergence in Sobolev spaces up to the boundary. (English)
Keyword: Boundary layers
Keyword: correctors
Keyword: nonlinear reaction diffusion equations
Keyword: chaffee-infante equation
MSC: 35B10
MSC: 35B25
MSC: 35B40
MSC: 35C20
MSC: 35K57
MSC: 76D10
idZBL: Zbl 0911.35012
idMR: MR1629713
Date available: 2009-02-17T10:11:22Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] S. N. Alekseenko: Existence and asymptotic representation of weak solutions to the flowing problem under the condition of regular slippage on solid walls.Siberian Math. J. 35, 2 (1994), 209–229 Zbl 0856.35099, MR 1288259
Reference: [2] R. Balian, J. L. Peube, ed.: Fluid dynamics.Cours de l’École d’Été de Physique Théorique, Les Houches, Gordon and Breach Science Publishers, New-York (1977) Zbl 0348.00025, MR 0495783
Reference: [3] O. V. Besov V. P. Il’in, S. M. Nikol’skii: Integral representations of functions and imbedding theorems.Vol I, English translation edited by M.H. Taibleson, J. Wiley, New York (1978) MR 0519341
Reference: [4] W. Eckhaus: Asymptotic Analysis of Singular Perturbations.North-Holland (1979) Zbl 0421.34057, MR 0553107
Reference: [5] P. Germain: Méthodes Asymptotiques en Mécanique des [2] Zbl 0387.76001
Reference: [6] O. A. Ladyzhenskaya: The mathematical theory of viscous incompressible flows.$2^{\text{nd}}$ ed., Gordon and Breach, New York (1969) MR 0254401
Reference: [7] P. Lagerström: Matched Asymptotics Expansion, Ideas and Techniques.Springer-Verlag, New York (1988) MR 0958913
Reference: [8] J. L. Lions: Perturbations singulières dans les problèmes aux limites et en controle optimal.Lecture Notes in Math 323, Springer-Verlag, New York (1973) Zbl 0268.49001, MR 0600331
Reference: [9] H. K. Moffatt: Six lectures on general fluid dynamics and two on hydromagnetic dynamo [2] Zbl 0367.76001
Reference: [10] O. Oleinik: The Prandtl system of equations in boundary layer theory.Dokl. Akad. Nauk SSSR 150 4(3) (1963), 583–586 MR 0153979
Reference: [11] N. C. Owen J. Rubinstein, P. Sternberg: Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition.Proc. R. Soc. Lond. A 429 (1990), 505–532 MR 1057968
Reference: [12] J. Rubinstein, P. Sternberg: On the slow motion of vortices in the Ginzburg-Landau heat flow.SIAM J. Math. Anal. 26 (1995), no 6, 1452–1466 Zbl 0838.35102, MR 1356453
Reference: [13] R. Temam: Infinite Dimensional Dynamical Systems in Mechanics and Physics.$2^{\text{nd}}$ edition, Springer-Verlag, New York, Berlin (1997) Zbl 0871.35001, MR 1441312
Reference: [14] R. Temam, X. Wang: Asymptotic analysis of Oseen Type Equations in a Channel at Small Viscosity.IU Math. J. 45 (1996), no.3, 863–916 Zbl 0881.35097, MR 1422110
Reference: [15] R. Temam, X. Wang: On the behavior of the Navier-Stokes equations at vanishing viscosity.volume dedicated to the memory of E. De Giorgi, Annali della Scuola Normale Superiore di Pisa (to appear)
Reference: [16] R. Temam, X. Wang: Boundary Layers for Oseen’s Type Equation in Space Dimension Three.Russian Journal of Mathematical Physics 5 (1997), no. 2, 227–246 Zbl 0912.35125, MR 1491635
Reference: [17] M. I. Vishik, L. A. Lyusternik: Regular degeneration and boundary layer for linear differential equations with small parameter.Uspekki Mat. Nauk 12 (1957), 3–122 Zbl 0087.29602, MR 0096041


Files Size Format View
ArchMathRetro_034-1998-1_21.pdf 228.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo