Previous |  Up |  Next

Article

Title: Three-dimensional conformally flat pseudo-symmetric spaces of constant type (English)
Author: Hashimoto, Norio
Author: Sekizawa, Masami
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 4
Year: 2000
Pages: 279-286
Summary lang: English
.
Category: math
.
Summary: An explicit classification of the spaces in the title is given. The resulting spaces are locally products or locally warped products of the real line and two-dimensional spaces of constant curvature. (English)
Keyword: Riemannian manifold
Keyword: conformally flat space
Keyword: pseudo-symmetric space
Keyword: warped product
MSC: 53C20
MSC: 53C21
MSC: 53C35
idZBL: Zbl 1054.53060
idMR: MR1811172
.
Date available: 2008-06-06T22:26:16Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107742
.
Reference: [1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian Manifold of Conullity Two.World Scientific, Singapore, 1996. MR 1462887
Reference: [2] Deprez J., Deszcz R., Verstraelen L.: Examples of pseudo-symmetric conformally flat warped products.Chinese J. Math 17(1989), 51–65. Zbl 0678.53022, MR 1007875
Reference: [3] Deszcz R.: On pseudo-symmetric spaces.Bull. Soc. Math. Belgium, Série A. 44(1992), 1–34.
Reference: [4] Eisenhart L. P.: Riemannian Geometry.Princeton University, Sixth Printing 1966. (First Printing 1925.) MR 1487892
Reference: [5] Hájková V.: Foliated semi-symmetric spaces in dimension 3.(in Czech), Doctoral Thesis, Prague, 1995.
Reference: [6] Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$.Nagoya Math. J. 132(1993), 1–36. MR 1253692
Reference: [7] Kowalski O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$.Czechoslovak Math. J. 46(121) (1996), 427–474. (Preprint 1991). Zbl 0879.53014, MR 1408298
Reference: [8] Kowalski O., Sekizawa M.: Locally isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3>0$.Arch. Math. 32(1996), 137–145. MR 1407345
Reference: [9] Kowalski O., Sekizawa M.: Riemannian 3-manifolds with $c$-conullity two.Bollenttino, U.M.I., (7)11-B (1997), Suppl. face. 2, 161–184. Zbl 0879.53034, MR 1456259
Reference: [10] Kowalski O., Sekizawa M.: Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces.Rendiconti di Matematica, Serie VII, Vol.17, Roma (1997), 477–512. Zbl 0889.53026, MR 1608724
Reference: [11] Kowalski O., Sekizawa M.: Pseudo-symmetric spaces of constant type in dimension three-non-elliptic spaces.Bull. Tokyo Gakugei University Sect.IV. 50(1998), 1–28. Zbl 0945.53020, MR 1656076
Reference: [12] Kowalski O., Sekizawa M.: Pseudo-symmetric Spaces of Constant Type in Dimension Three.Personal Note, Charles University-Tokyo Gakugei University, Prague-Tokyo, 1998. Zbl 0945.53020
Reference: [13] Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces.J. Math. Sci., New York 1996, 311–333. Zbl 0866.53028, MR 1384327
Reference: [14] Milnor J.: Curvatures of left invarinat metrics on Lie groups.Adv. Math. 21(1976), 293–329. MR 0425012
Reference: [15] O’Neill B.: Semi-Riemannian Geometry With Applications to Relativity.Academic Press, New York-London, 1983. Zbl 0531.53051, MR 0719023
Reference: [16] Takagi H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries.Tôhoku Math. Journ. 27(1975), 103–110. Zbl 0323.53037, MR 0442852
.

Files

Files Size Format View
ArchMathRetro_036-2000-4_5.pdf 257.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo