Previous |  Up |  Next

Article

Title: Some properties of Lorenzen ideal systems (English)
Author: Kalapodi, A.
Author: Kontolatou, A.
Author: Močkoř, J.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 4
Year: 2000
Pages: 287-295
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a partially ordered abelian group ($po$-group). The construction of the Lorenzen ideal $r_a$-system in $G$ is investigated and the functorial properties of this construction with respect to the semigroup $(R(G),\oplus ,\le )$ of all $r$-ideal systems defined on $G$ are derived, where for $r,s\in R(G)$ and a lower bounded subset $X\subseteq G$, $X_{r\oplus s}=X_r\cap X_s$. It is proved that Lorenzen construction is the natural transformation between two functors from the category of $po$-groups with special morphisms into the category of abelian ordered semigroups. (English)
Keyword: $r$-ideal
Keyword: $r_a$-system
Keyword: system of finite character
MSC: 06F05
MSC: 06F15
MSC: 06F20
MSC: 18A23
idZBL: Zbl 1047.06011
idMR: MR1811173
.
Date available: 2008-06-06T22:26:19Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107743
.
Reference: [1] Arnold, I.: Ideale in kommutativen Halbgruppen.Rec. Math. Soc. Math. Moscow 36 (1929), 401–407.
Reference: [2] Borewicz, I. R., Shafarevicz, Z. I.: Number Theory.Academic Press, New York, 1966. MR 0195803
Reference: [3] Clifford, A. H.: Arithmetic and ideal theory of abstract multiplication.Ann. of Math. 39 (1938), 594–610. MR 1503427
Reference: [4] Halter-Koch, F.: Ideal systems.Marcel Dekker, Inc, New York - Basel - Hong Hong, 1998. Zbl 0953.13001, MR 1828371
Reference: [5] Jaffard, P.: Les systémes d’idéaux.Dunod, Paris, 1960. Zbl 0101.27502, MR 0114810
Reference: [6] Kalapodi, A. and Kontolatou, A.: Algebraic and categorical properties of $r$-ideal systems.International Journal of Mathematics and Mathematical Sciences, to appear.
Reference: [7] Lorenzen, P.: Abstrakte Begründung der multiplikativen Idealtheorie.Math. Z. 45 (1939), 533–553. Zbl 0021.38703, MR 0000604
Reference: [8] Močkoř, J.: Groups of Divisibility.D. Reidl Publ. Co., Dordrecht, 1983. MR 0720862
Reference: [9] Močkoř, J., Kontolatou, A.: Groups with quasi divisor theory.Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. MR 1223185
Reference: [10] Skula, L.: Divisorentheorie einer Halbgruppe.Math. Z. 114 (1970), 113–120. Zbl 0177.03202, MR 0262401
.

Files

Files Size Format View
ArchMathRetro_036-2000-4_6.pdf 379.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo