Previous |  Up |  Next

Article

Title: Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral (English)
Author: Federson, M.
Author: Bianconi, R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 4
Year: 2001
Pages: 307-328
Summary lang: English
.
Category: math
.
Summary: In 1990, Hönig proved that the linear Volterra integral equation \[ x\left( t\right) -\,(K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right)\,ds=f\left( t\right)\,,\qquad t\in \left[ a,b\right]\,, \] where the functions are Banach space-valued and $f$ is a Kurzweil integrable function defined on a compact interval $\left[ a,b\right] $ of the real line $\mathbb R$, admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation \[ x\left( t\right) - (K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right) dg\left( s\right) =f\left( t\right) ,\qquad t\in \left[ a,b\right]\,, \] in a real-valued context. (English)
Keyword: linear integral equations
Keyword: Kurzweil-Henstock integrals
MSC: 26A39
MSC: 45A05
idZBL: Zbl 1090.45001
idMR: MR1879454
.
Date available: 2008-06-06T22:29:26Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107809
.
Reference: [1] Federson M.: Sobre a existência de soluções para Equações Integrais Lineares com respeito a Integrais de Gauge.Doctor Thesis, Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, 1998, in portuguese.
Reference: [2] Federson M.: The Fundamental Theorem of Calculus for multidimensional Banach space-valued Henstock vector integrals.Real Anal. Exchange 25 (1), (1999-2000), 469–480. MR 1758903
Reference: [3] Federson M.: Substitution formulas for the vector integrals of Kurzweil and of Henstock.Math. Bohem., (2001), in press.
Reference: [4] Federson M., Bianconi R.: Linear integral equations of Volterra concerning the integral of Henstock.Real Anal. Exchange 25 (1), (1999-2000), 389–417. MR 1758896
Reference: [5] Gilioli A.: Natural ultrabornological non-complete, normed function spaces.Arch. Math. 61 (1993), 465–477. Zbl 0783.46003, MR 1241052
Reference: [6] Henstock R.: A Riemann-type integral of Lebesgue power.Canad. J. Math. 20 (1968), 79–87. Zbl 0171.01804, MR 0219675
Reference: [7] Henstock R.: The General Theory of Integration.Oxford Math. Monogr., Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656
Reference: [8] Hönig C. S.: The Abstract Riemann-Stieltjes Integral and its Applications to Linear Differential Equations with Generalized Boundary Conditions.Notas do Instituto de Matemática e Estatística da Universidade de São Paulo, Série Matemática, 1, 1973. Zbl 0372.34038, MR 0460561
Reference: [9] Hönig C. S.: Volterra-Stieltjes integral equations.Math. Studies 16, North-Holland Publ. Comp., Amsterdam, 1975. MR 0499969
Reference: [10] Hönig C. S.: Equations intégrales généralisées et applications.Publ. Math. Orsay, 83-01, exposé 5, 1–50. Zbl 0507.45017
Reference: [11] Hönig C. S.: On linear Kurzweil-Henstock integral equations.Seminário Brasileiro de Análise 32 (1990), 283–298.
Reference: [12] Hönig C. S.: On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals.Seminário Brasileiro de Análise 33 (1991), 331–341.
Reference: [13] Hönig C. S.: A Riemannian characterization of the Bochner-Lebesgue integral.Seminário Brasileiro de Análise 35 (1992), 351–358.
Reference: [14] Kurzweil J.: Nichtabsolut Konvergente Integrale.Leipzig, 1980. Zbl 0441.28001, MR 0597703
Reference: [15] Lee P. Y.: Lanzhou Lectures on Henstock Integration.World Sci. Singapore, 1989. Zbl 0699.26004, MR 1050957
Reference: [16] Lin, Ying-Jian: On the equivalence of the McShane and Lebesgue integrals.Real Anal. Exchange 21 (2), (1995-96), 767–770. MR 1407292
Reference: [17] MacLane S., Birkhoff G.: Algebra.The MacMillan Co., London, 1970. MR 0214415
Reference: [18] Mawhin J.: Introduction a l’Analyse.Cabay, Louvain-la-Neuve, 1983.
Reference: [19] McLeod R. M.: The Generalized Riemann Integral.Carus Math. Monogr. 20, The Math. Ass. of America, 1980. Zbl 0486.26005, MR 0588510
Reference: [20] McShane E. J.: A unified theory of integration.Amer. Math. Monthly 80 (1973), 349–359. Zbl 0266.26008, MR 0318434
Reference: [21] Pfeffer W. F.: The Riemann Approach to Integration.Cambridge, 1993. Zbl 0804.26005, MR 1268404
Reference: [22] Schwabik S.: The Perron integral in ordinary differential equations.Differential Integral Equations 6 (4) (1993), 863–882. Zbl 0784.34006, MR 1222306
Reference: [23] Schwabik S.: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (4), (1996), 425–447. Zbl 0879.28021, MR 1428144
Reference: [24] Tvrdý M.: Linear integral equations in the space of regulated functions.Math. Bohem. 123 (2), (1998), 177–212. Zbl 0941.45001, MR 1673977
.

Files

Files Size Format View
ArchMathRetro_037-2001-4_8.pdf 431.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo