Previous |  Up |  Next

Article

Title: Multiple solutions for nonlinear periodic problems with discontinuities (English)
Author: Papageorgiou, Nikolaos S.
Author: Yannakakis, Nikolaos
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 3
Year: 2002
Pages: 171-182
Summary lang: English
.
Category: math
.
Summary: In this paper we consider a periodic problem driven by the one dimensional $p$-Laplacian and with a discontinuous right hand side. We pass to a multivalued problem, by filling in the gaps at the discontinuity points. Then for the multivalued problem, using the nonsmooth critical point theory, we establish the existence of at least three distinct periodic solutions. (English)
Keyword: multiple solutions
Keyword: periodic problem
Keyword: one-dimensional $p$-Laplacian
Keyword: discontinuous vector field
Keyword: nonsmooth Palais-Smale condition
Keyword: locally Lipschitz function
Keyword: generalized subdifferential
Keyword: critical point
Keyword: Saddle Point Theorem
Keyword: Ekeland variational principle
MSC: 34A36
MSC: 34B15
MSC: 34C25
MSC: 47J30
idZBL: Zbl 1090.34035
idMR: MR1921589
.
Date available: 2008-06-06T22:30:20Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107831
.
Reference: [1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators.Nonlinear Anal. 10 (1986), 1083–1103. MR 0857742
Reference: [2] Chang K. C.: Variational methods for non-differentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. Zbl 0487.49027, MR 0614246
Reference: [3] Clarke F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. Zbl 0582.49001, MR 0709590
Reference: [4] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems.J. Math. Anal. Appl. 198 (1996), 35–48. MR 1373525
Reference: [5] De Coster C.: On pairs of positive solutions for the one dimensional $p$-Laplacian.Nonlinear Anal. 23 (1994), 669–681. MR 1297285
Reference: [6] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u^{\prime }|^{p-2}u^{\prime })^{\prime }+f(t,u)=0,\;u(0)=u(T)=0$.J. Differential Equations 80 (1989), 1–13. Zbl 0708.34019, MR 1003248
Reference: [7] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ode.Nonlinear Anal. 18 (1992), 79–92. MR 1138643
Reference: [8] Drábek P., Invernizzi S.: On the periodic bvp for the forced Duffing equation with jumping nonlinearity.Nonlinear Anal. 10 (1986), 643–650. Zbl 0616.34010, MR 0849954
Reference: [9] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and assymetric nonlinearities.Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. MR 1310080
Reference: [10] Fabry C., Mawhin J., Nkashama M.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 18 (1986), 173–180. Zbl 0586.34038, MR 0818822
Reference: [11] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations.Differential Integral Equations 6 (1993), 705–719. Zbl 0784.34018, MR 1202567
Reference: [12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol I: Theory.Kluwer, The Netherlands, 1997. MR 1485775
Reference: [13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol II: Applications.Kluwer, The Netherlands, 2000. MR 1741926
Reference: [14] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038
Reference: [15] Papageorgiou N. S., Yannakakis N.: Nonlinear boundary value problems.Proc. Indian Acad. Sci. Math. Sci. 109 (1999), 211–230. Zbl 0952.34035, MR 1687731
Reference: [16] Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. H. Poincarè Non Linèaire 3 (1986), 77–109. Zbl 0612.58011, MR 0837231
Reference: [17] Tang C.-L.: Existence and multiplicity of periodic solutions for nonautonomous second order systems.Nonlinear Anal. 32 (1998), 299–304. Zbl 0949.34032, MR 1610641
Reference: [18] Zhang M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian.Nonlinear Anal. 29 (1997), 41–51. Zbl 0876.35039, MR 1447568
Reference: [19] Mawhin J. M., Willem M.: Critical Point Theory and Hamiltonian Systems.Springer, Berlin (1989). Zbl 0676.58017, MR 0982267
.

Files

Files Size Format View
ArchMathRetro_038-2002-3_2.pdf 363.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo