Previous |  Up |  Next

Article

Title: Heteroclinic orbits in plane dynamical systems (English)
Author: Malaguti, Luisa
Author: Marcelli, Cristina
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 3
Year: 2002
Pages: 183-200
Summary lang: English
.
Category: math
.
Summary: We consider general second order boundary value problems on the whole line of the type $u^{\prime \prime }=h(t,u,u^{\prime })$, $u(-\infty )=0, u(+\infty )=1$, for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the $(u,u^{\prime })$ plane dynamical system. (English)
Keyword: nonlinear boundary value problems
Keyword: heteroclinic solutions
Keyword: lower and upper solutions
Keyword: singular boundary value problems
MSC: 34B15
MSC: 34B16
MSC: 34B40
MSC: 34C37
MSC: 37C29
idZBL: Zbl 1090.34037
idMR: MR1921590
.
Date available: 2008-06-06T22:30:23Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107832
.
Reference: [1] Cahn J. W., Mallet-Paret J., Van Vleck E. S.: Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice.SIAM J. Appl. Math. 59 (1999), 455–493. Zbl 0917.34052, MR 1654427
Reference: [2] Chow S. N., Lin X. B., Mallet-Paret J.: Transition layers for singularly perturbed delay differential equations with monotone nonlinearities.J. Dynam. Differential Equations 1 (1989), 3–43. Zbl 0684.34071, MR 1010959
Reference: [3] Hsu C. H., Lin, S S.: Existence and multiplicity of traveling waves in a lattice dynamical system.J. Diffetrential Equations 164 (2000), 431–450. Zbl 0954.34029, MR 1765570
Reference: [4] Huang W.: Monotonicity of heteroclinic orbits and spectral properties of variational equations for delay differential equations.J. Differential Equations 162 (2000), 91–139. Zbl 0954.34071, MR 1741874
Reference: [5] Erbe L., Tang M.: Structure of positive radial solutions of semilinear elliptic equations.J. Differential Equations 133 (1997), 179–202. Zbl 0871.34023, MR 1427849
Reference: [6] Malaguti L., Marcelli C.: Existence of bounded trajectories via upper and lower solutions.Discrete Contin. Dynam. Systems 6 (2000), 575–590. Zbl 0979.34019, MR 1757388
Reference: [7] Malaguti L., Marcelli C.: Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms.Math. Nachr. 242 (2002). Zbl 1016.35036, MR 1916855
Reference: [8] Marcelli C., Rubbioni P.: A new extension of classical Müller’s theorem.Nonlinear Anal. 28 (1997), 1759–1767. Zbl 0877.34006, MR 1432630
Reference: [9] O’Regan D.: Existence Theory for Nonlinear Ordinary Differential Equations.Kluwer Academic Publishers, 1997. Zbl 1077.34505, MR 1449397
Reference: [10] Ortega R., Tineo A.: Resonance and non-resonance in a problem of boundedness.Proc. Amer. Math. Soc. 124 (1996), 2089–2096. Zbl 0858.34018, MR 1342038
Reference: [11] Volpert V. A., Suhov, Yu. M.: Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equation.Ergodic Theory Dynam. Systems 19 (1999), 809–835. MR 1695921
Reference: [12] Walter W.: Differential and Integral Inequalities.Springer-Verlag, Berlin 1970. Zbl 0252.35005, MR 0271508
.

Files

Files Size Format View
ArchMathRetro_038-2002-3_3.pdf 376.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo