Previous |  Up |  Next

Article

Title: Homomorphisms from the unitary group to the general linear group over complex number field and applications (English)
Author: Cao, Chong-Guang
Author: Zhang, Xian
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 3
Year: 2002
Pages: 209-217
Summary lang: English
.
Category: math
.
Summary: Let $M_n$ be the multiplicative semigroup of all $n\times n$ complex matrices, and let $U_n$ and $GL_n$ be the $n$–degree unitary group and general linear group over complex number field, respectively. We characterize group homomorphisms from $U_n$ to $GL_m$ when $n>m\ge 1$ or $n=m\ge 3$, and thereby determine multiplicative homomorphisms from $U_n$ to $M_m$ when $n>m\ge 1$ or $n=m\ge 3$. This generalize Hochwald’s result in [Lin. Alg. Appl.  212/213:339-351(1994)]: if $f:U_n\rightarrow M_n$ is a spectrum–preserving multiplicative homomorphism, then there exists a matrix $R$ in $GL_n$ such that $ f(A)={R}AR$ for any $A\in U_n$. (English)
Keyword: homomorphism
Keyword: unitary group
Keyword: general linear group
MSC: 15A30
MSC: 20E36
MSC: 20G20
idZBL: Zbl 1068.20048
idMR: MR1921592
.
Date available: 2008-06-06T22:30:29Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107834
.
Reference: [1] Beasley L. B., Pullman N. L.: Linear operators preserving idempotent matrices over fields.Linear Algebra Appl. 146 (1991), 7–20. Zbl 0718.15004, MR 1083460
Reference: [2] Cao Chongguang, Zhang Xian: Multiplicative semigroup automorphisms of upper triangular matrices over rings.Linear Algebra Appl. 278, No. 1-3 (1998), 85–90. MR 1637327
Reference: [3] Chen, Yu.: Homomorphisms of two dimentional linear groups.Comm. Algebra 18 (1990), 2383–2396. MR 1063142
Reference: [4] Dicks W., Hartley B.: On homomorphisms between linear groups over division rings.Comm. Algebra 19 (1991), 1919–1943. MR 1121114
Reference: [5] Hochwald S. H.: Multiplicative maps on matrices that preserve spectrum.Linear Algebra Appl. 212/213 (1994), 339–351. MR 1306985
Reference: [6] Hua, Luogeng, Wan, Zhexian: Classical groups.Science Technology Press, Shanghai, 1962 (Chinese).
Reference: [7] Liu, Shaowu, Wang L.: Homomorphisms between symplectic groups.Chinese Ann. Math. Ser. B 14 No. 3 (1993), 287–296. Zbl 0797.20037, MR 1264302
Reference: [8] Liu, Shaowu: Automorphisms of singular symplectic groups over fields.Chinese Con. Math. 19 No. 2 (1998), 203–213. MR 1651628
Reference: [9] Petechuk V. M.: Homomorphisms of linear groups over commutative rings.Mat. Zametki 46 No. 5 (1989), 50–61 (Russian); translation in Math. Notes 46. 5-6 (1989), 863–870. Zbl 0702.20032, MR 1033420
Reference: [10] Petechuk V. M.: Homomorphisms of linear groups over rings.Mat. Zametki 45 No. 2 (1989), 83–94 (Russian); translation in Math. Notes 45 1–2 (1989), 144–151. Zbl 0682.20037, MR 1002522
Reference: [11] Zha, Jianguo: Determination of homomorphisms between linear groups of the same degree over division rings.J. London Math. Soc., II. Ser. 53 No. 3 (1996), 479–488. Zbl 0858.20038, MR 1396712
Reference: [12] Zhang, Xian, Hu, Yahui, Cao, Chongguang: Multiplicative group automorphisms of invertible upper triangular matrices over fields.Acta Math. Sci. (English ed.) 20 4 (2000), 515–521. Zbl 0985.20040, MR 1805020
.

Files

Files Size Format View
ArchMathRetro_038-2002-3_5.pdf 347.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo