Previous |  Up |  Next

Article

Title: Common fixed point theorems for fuzzy mappings (English)
Author: Rashwan, R. A.
Author: Ahmed, Magdy A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 3
Year: 2002
Pages: 219-226
Summary lang: English
.
Category: math
.
Summary: In this paper, we prove common fixed point theorems for fuzzy mappings satisfying a new inequality initiated by Constantin [6] in complete metric spaces. (English)
Keyword: fuzzy sets
Keyword: fuzzy mappings
Keyword: fixed point
MSC: 54A40
MSC: 54H25
idZBL: Zbl 1068.54008
idMR: MR1921593
.
Date available: 2008-06-06T22:30:32Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107835
.
Reference: [1] Arora, S. C., Sharma, V.: Fixed point theorems for fuzzy mappings.Fuzzy Sets and Systems 110 (2000), 127–130. MR 1748116
Reference: [2] Beg, I., Azam, A.: Fixed points of asymptotically regular multivalued mappings.J. Austral. Math. Soc. 53 (1992), 313–326. MR 1187851
Reference: [3] Bose, R. K., Sahani, D.: Fuzzy mappings and fixed point theorems.Fuzzy Sets and Systems 21 (1987), 53–58. MR 0868355
Reference: [4] Chang, S.-S.: Fixed point theorems for fuzzy mappings.Fuzzy Sets and Systems 17 (1985), 181–187. Zbl 0579.54034, MR 0811539
Reference: [5] Chitra, A.: A note on the fixed point theorems for fuzzy mappings.Fuzzy Sets and Systems 19 (1986), 305–308. MR 0848669
Reference: [6] Constantin, A.: Common fixed points of weakly commuting mappings in 2-metric spaces.Math. Japonica 36, No. 3 (1991), 507–514. Zbl 0763.54031, MR 1109238
Reference: [7] Heilpern, S.: Fuzzy mappings and fixed point theorem.J. Math. Anal. Appl. 83 (1981), 566–569. Zbl 0486.54006, MR 0641351
Reference: [8] Hicks, T. L.: Multivalued mappings on probabilistic metric spaces.Math. Japon. 46, No. 3 (1997), 413–418. Zbl 0910.47051, MR 1487290
Reference: [9] Iseki, K.: Multi-valued contraction mappings in complete metric spaces.Rend. Sem. Mat. Univ. Padova 53 (1975), 15–19. MR 0410715
Reference: [10] Lee, B. S., Cho, S. J.: A fixed point theorems for contractive type fuzzy mappings.Fuzzy Sets and Systems 61 (1994), 309–312. MR 1273252
Reference: [11] Markin, J.: A fixed point theorem for set valued mappings.Bull. Amer. Math. Soc. 74 (1968), 639–640. Zbl 0159.19903, MR 0227825
Reference: [12] Nadler, S. B.: Multivalued contraction mappings.Pacific J. Math. 30 (1969), 475–488. MR 0254828
Reference: [13] Park, J. Y., Jeong, J. U.: Fixed point theorems for fuzzy mappings.Fuzzy Sets and Systems 87 (1997), 111–116. MR 1441936
Reference: [14] Pathak, H. K., Khan, M. S.: Fixed points of fuzzy mappings under Caristi-Kirk type condition.J. Fuzzy Math. 6, No. 1 (1998), 119–126. MR 1609887
Reference: [15] Popa, V.: Common fixed points for multifunctions satisfying a rational inequality.Kobe J. Math. 2 (1985), 23–28. Zbl 0591.54037, MR 0811799
Reference: [16] Rhoades, B. E.: A common fixed point theorem for a sequence of fuzzy mappings.Int. J. Math. Math. Sci. 18, No. 3 (1995), 447–450. Zbl 0840.47049, MR 1331943
Reference: [17] Rhoades, B. E.: Fixed points of some fuzzy maps.Soochow J. Math. 22 (1996), 111–115. MR 1380758
Reference: [18] Singh, B., Chauhan, M. S.: Fixed points of associated multimaps of fuzzy maps.Fuzzy Sets and Systems 110 (2000), 131–134. MR 1748117
Reference: [19] Singh, S. L. and Talwar, R.: Fixed points of fuzzy mappings.Soochow J. Math. 19 (1993), 95–102. MR 1210298
Reference: [20] Singh, K. L., Whitfield, J. H. M.: Fixed points for contractive type multivalued mappings.Math. Japon. 27 (1982), 117–124. MR 0649027
Reference: [21] Som, T., Mukherjee, R. N.: Some fixed point theorems for fuzzy mappings.Fuzzy sets and Systems 33 (1989), 213–219. MR 1024224
Reference: [22] Zadeh, L. A.: Fuzzy sets.Inform. and Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427
.

Files

Files Size Format View
ArchMathRetro_038-2002-3_6.pdf 313.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo