Previous |  Up |  Next

Article

Title: The contact system for $A$-jet manifolds (English)
Author: Alonso-Blanco, R. J.
Author: Muñoz-Díaz, J.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 3
Year: 2004
Pages: 233-248
Summary lang: English
.
Category: math
.
Summary: Jets of a manifold $M$ can be described as ideals of $\mathcal {C}^\infty (M)$. This way, all the usual processes on jets can be directly referred to that ring. By using this fact, we give a very simple construction of the contact system on jet spaces. The same way, we also define the contact system for the recently considered $A$-jet spaces, where $A$ is a Weil algebra. We will need to introduce the concept of derived algebra. (English)
Keyword: jet
Keyword: contact system
Keyword: Weil algebra
Keyword: Weil bundle
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1112.58002
idMR: MR2107018
.
Date available: 2008-06-06T22:43:43Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107906
.
Reference: [1] Alonso Blanco R. J.: Jet manifold associated to a Weil bundle.Arch. Math. (Brno) 36 (2000), 195–199. MR 1785036
Reference: [2] Alonso Blanco R. J.: On the local structure of $A$-jet manifolds.In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math Publ. 3, Silesian Univ. Opava 2001, 51–61. MR 1978762
Reference: [3] Jiménez S., Muñoz J., Rodríguez J.: On the reduction of some systems of partial differential equations to first order systems with only one unknown function.In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math. Publ. 3, Silesian Univ. Opava 2001, 187–195. MR 1978775
Reference: [4] Kolář I.: Affine structure on Weil bundles.Nagoya Math. J. 158 (2000), 99–106. Zbl 0961.58002, MR 1766571
Reference: [5] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431
Reference: [6] Lie S.: Theorie der Transformationsgruppen.Leipzig, 1888. (Second edition in Chelsea Publishing Company, New York 1970). Zbl 0248.22009
Reference: [7] Muñoz J., Muriel J., Rodríguez J.: The canonical isomorphism between the prolongation of the symbols of a nonlinear Lie equation and its attached linear Lie equation.in Proccedings of Diff. Geom. and its Appl. (Brno, 1998), Masaryk Univ., Brno 1999, 255–261. MR 1708913
Reference: [8] Muñoz J., Muriel J., Rodríguez J.: Integrability of Lie equations and pseudogroups.J. Math. Anal. Appl. 252 (2000), 32–49. Zbl 0973.58008, MR 1797843
Reference: [9] Muñoz J., Muriel J., Rodríguez J.: Weil bundles and jet spaces.Czechoslovak Math. J. 50 (125) (2000), no. 4, 721–748. Zbl 1079.58500, MR 1792967
Reference: [10] Muñoz J., Muriel J., Rodríguez J.: A remark on Goldschmidt’s theorem on formal integrability.J. Math. Anal. Appl. 254 (2001), 275–290. Zbl 0999.35003, MR 1807901
Reference: [11] Muñoz J., Muriel J., Rodríguez J.: The contact system on the $(m,l)$-jet spaces.Arch. Math. (Brno) 37 (2001), 291–300. MR 1879452
Reference: [12] Muñoz J., Muriel J., Rodríguez J.: On the finiteness of differential invariants.J. Math. Anal. Appl. 284 (2003), No. 1, 266–282. Zbl 1070.58005, MR 1996132
Reference: [13] Rodríguez J.: Sobre los espacios de jets y los fundamentos de la teoría de los sistemas de ecuaciones en derivadas parciales.Ph. D. Thesis, Salamanca, 1990.
Reference: [14] Weil A.: Théorie des points proches sur les variétés différentiables.Colloque de Géometrie Différentielle, C. N. R. S. (1953), 111–117. Zbl 0053.24903, MR 0061455
.

Files

Files Size Format View
ArchMathRetro_040-2004-3_3.pdf 302.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo