Previous |  Up |  Next

Article

Title: Almost $Q$-rings (English)
Author: Jayaram, C.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 3
Year: 2004
Pages: 249-257
Summary lang: English
.
Category: math
.
Summary: In this paper we establish some new characterizations for $Q$-rings and Noetherian $Q$-rings. (English)
Keyword: $Q$-ring
Keyword: almost $Q$-ring
Keyword: Noetherian $Q$-ring.
MSC: 13A15
MSC: 13F20
MSC: 13G05
idZBL: Zbl 1112.13004
idMR: MR2107019
.
Date available: 2008-06-06T22:43:46Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107907
.
Reference: [1] Anderson D. D.: Multiplication ideals, Multiplication rings and the ring $R(X)$.Canad. J. Math. XXVIII (1976), 760–768. Zbl 0343.13009, MR 0424794
Reference: [2] Anderson D. D.: Some remarks on multiplication ideals.Math. Japon. 25 (1980), 463–469. Zbl 0446.13001, MR 0594548
Reference: [3] Anderson D. D.: Noetherian rings in which every ideal is a product of primary ideals.Canad. Math. Bull. 23 (4), (1980), 457–459. Zbl 0445.13006, MR 0602601
Reference: [4] Anderson D. D., Mahaney L. A.: Commutative rings in which every ideal is a product of primary ideals.J. Algebra 106 (1987), 528–535. Zbl 0607.13004, MR 0880975
Reference: [5] Anderson D. D., Mahaney L. A.: On primary factorizations.J. Pure Appl. Algebra 54 (1988), 141–154. Zbl 0665.13004, MR 0963540
Reference: [6] Becerra L., Johnson J. A.: A note on quasi-principal ideals.Tamkang J. Math. (1982), 77–82. MR 0835192
Reference: [7] Heinzer W., Ohm J.: Locally Noetherian commutative rings.Trans. Amer. Math. Soc. 158 (1971), 273–284. Zbl 0223.13017, MR 0280472
Reference: [8] Heinzer W., Lantz D.: The Laskerian property in commutative rings.J. Algebra 72 (1981), 101–114. Zbl 0498.13001, MR 0634618
Reference: [9] Larsen M. D., McCarthy P. J.: Multiplicative theory of ideals.Academic Press, New York 1971. Zbl 0237.13002, MR 0414528
Reference: [10] Levitz K. B.: A characterization of general ZPI-rings.Proc. Amer. Math. Soc. 32 (1972), 376–380. MR 0294312
Reference: [11] McCarthy P. J.: Principal elements of lattices of ideals.Proc. Amer. Math. Soc. 30 (1971), 43–45. Zbl 0218.13001, MR 0279080
Reference: [12] Ohm J., Pendleton R. L.: Rings with Noetherian spectrum.Duke Math. J. 35 (1968), 631–639. Zbl 0172.32202, MR 0229627
.

Files

Files Size Format View
ArchMathRetro_040-2004-3_4.pdf 212.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo