Previous |  Up |  Next

Article

Title: Finiteness of a class of Rabinowitsch polynomials (English)
Author: Schlage-Puchta, Jan-Christoph
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 3
Year: 2004
Pages: 259-261
Summary lang: English
.
Category: math
.
Summary: We prove that there are only finitely many positive integers $m$ such that there is some integer $t$ such that $|n^2+n-m|$ is 1 or a prime for all $n\in [t+1, t+\sqrt{m}]$, thus solving a problem of Byeon and Stark. (English)
Keyword: real quadratic fields
Keyword: class number
Keyword: Rabinowitsch polynomials
MSC: 11C08
MSC: 11R11
MSC: 11R29
idZBL: Zbl 1122.11070
idMR: MR2107020
.
Date available: 2008-06-06T22:43:49Z
Last updated: 2014-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/107908
.
Reference: [1] Byeon D., Stark H. M.: On the Finiteness of Certain Rabinowitsch Polynomials.J. Number Theory 94 (2002), 177–180. Zbl 1033.11010, MR 1904967, 10.1006/jnth.2001.2729
Reference: [2] Byeon D., Stark H. M.: On the Finiteness of Certain Rabinowitsch Polynomials. II.J. Number Theory 99 (2003), 219–221. Zbl 1033.11010, MR 1957253, 10.1016/S0022-314X(02)00063-X
Reference: [3] Heath-Brown D. R.: Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression.Proc. London Math. Soc. (3) 64 (1992), 265–338. Zbl 0739.11033, MR 1143227
Reference: [4] Rabinowitsch G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern.J. Reine Angew. Mathematik 142 (1913), 153–164.
.

Files

Files Size Format View
ArchMathRetro_040-2004-3_5.pdf 160.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo