Previous |  Up |  Next

Article

Title: Countable extensions of torsion Abelian groups (English)
Author: Danchev, Peter
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 3
Year: 2005
Pages: 265-272
Summary lang: English
.
Category: math
.
Summary: Suppose $A$ is an abelian torsion group with a subgroup $G$ such that $A/G$ is countable that is, in other words, $A$ is a torsion countable abelian extension of $G$. A problem of some group-theoretic interest is that of whether $G \in \mathbb K$, a class of abelian groups, does imply that $A\in \mathbb K$. The aim of the present paper is to settle the question for certain kinds of groups, thus extending a classical result due to Wallace (J. Algebra, 1981) proved when $\mathbb K$ coincides with the class of all totally projective $p$-groups. (English)
Keyword: countable factor-groups
Keyword: $\Sigma $-groups
Keyword: $\sigma $-summable groups
Keyword: summable groups
Keyword: $p^{\omega + n}$-projective groups
MSC: 20K10
MSC: 20K35
idZBL: Zbl 1114.20030
idMR: MR2188382
.
Date available: 2008-06-06T22:46:10Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107957
.
Reference: [1] Danchev P. V.: Commutative group algebras of $\sigma $-summable abelian groups.Proc. Amer. Math. Soc. (9) 125 (1997), 2559–2564. Zbl 0886.16024, MR 1415581
Reference: [2] Danchev P. V.: Commutative group algebras of abelian $\Sigma $-groups.Math. J. Okayama Univ. 40 (1998), 77–90. MR 1755921
Reference: [3] Danchev P. V.: Commutative group algebras of highly torsion-complete abelian $p$-groups.Comment. Math. Univ. Carolin. (4) 44 (2003), 587–592. Zbl 1101.20001, MR 2062875
Reference: [4] Danchev P. V.: Commutative group algebras of summable abelian $p$-groups.Comm. Algebra, in press.
Reference: [5] Danchev P. V.: Generalized Dieudonné criterion.Acta Math. Univ. Comenian. (1) 74 (2005), 15–24. Zbl 1111.20045, MR 2154393
Reference: [6] Fuchs L.: Infinite Abelian Groups.Volumes I and II, Mir, Moskva, 1974 and 1977. (In Russian.) Zbl 0338.20063, MR 0457533
Reference: [7] Hill P. D.: Criteria for freeness in groups and valuated vector spaces.Lect. Notes in Math. 616 (1977), 140–157. Zbl 0372.20041, MR 0486206
Reference: [8] Hill P. D., Megibben C. K.: On direct sums of countable groups and generalizations.Études sur les Groupes Abéliens, Paris (1968), 183–206. Zbl 0203.32705, MR 0242943
Reference: [9] Hill P. D., Megibben C. K.: Extending automorphisms and lifting decompositions in abelian groups.Math. Annalen 175 (1968), 159–168. Zbl 0183.03202, MR 0223449
Reference: [10] Megibben C. K.: The generalized Kulikov criterion.Canad. J. Math. 21 (1969), 1192–1205. Zbl 0208.03502, MR 0249509
Reference: [11] Megibben C. K.: Countable extensions of simply presented groups.Internet information.
Reference: [12] Wallace K. D.: On mixed groups of torsion-free rank one with totally projective primary components.J. Algebra 17 (1971), 482–488. Zbl 0215.39902, MR 0272891
Reference: [13] Nunke R. J.: Purity and subfunctors of the identity.Topics in Abelian Groups, Scott Foresman and Co., (1963), 121–171. MR 0169913
.

Files

Files Size Format View
ArchMathRetro_041-2005-3_3.pdf 217.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo