Previous |  Up |  Next

Article

Title: Prolongation of pairs of connections into connections on vertical bundles (English)
Author: Doupovec, Miroslav
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 4
Year: 2005
Pages: 409-422
Summary lang: English
.
Category: math
.
Summary: Let $F$ be a natural bundle. We introduce the geometrical construction transforming two general connections into a general connection on the $F$-vertical bundle. Then we determine all natural operators of this type and we generalize the result by IK̇olář and the second author on the prolongation of connections to $F$-vertical bundles. We also present some examples and applications. (English)
Keyword: connection
Keyword: vertical bundle
MSC: 53C05
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1112.58003
idMR: MR2195494
.
Date available: 2008-06-06T22:46:45Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107970
.
Reference: [1] Cabras, A., Kolář, I.: Prolongation of second order connections to vertical Weil bundles.Arch. Math. (Brno) 37 (2001), 333–347. MR 1879456
Reference: [2] Doupovec, M., Kolář, I.: On the natural operators transforming connections to the tangent bundle of a fibred manifold.Knižnice VUT Brno, B-119 (1988), 47–56.
Reference: [3] Gancarzewicz, J.: Liftings of functions and vector fields to natural bundles.Dissertationes Math. Warszawa 1983. Zbl 0517.53016, MR 0697471
Reference: [4] Kobak, P.: Natural liftings of vector fields to tangent bundles of bundles of $1$-forms.Math. Bohem. 3 (116) (1991), 319–326. Zbl 0743.53008, MR 1126453
Reference: [5] Kolář, I.: Some natural operations with connections.J. Nat. Acad. Math. India 5 (1987), 127–141. MR 0994555
Reference: [6] Kolář, I., Slovák, J.: Prolongations of vector fields to jet bundles.Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 103–111. MR 1061792
Reference: [7] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag 1993. MR 1202431
Reference: [8] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors.Differential Geom. Appl. 11 (1999), 105–115. MR 1712139
Reference: [9] Kolář, I., Mikulski, W. M.: Natural lifting of connections to vertical bundles.Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 97–102. MR 1758084
Reference: [10] Mikulski, W. M.: Some natural operations on vector fields.Rend. Mat. Appl. (7) 12 (1992), 783–803. Zbl 0766.58005, MR 1205977
Reference: [11] Mikulski, W. M.: Some natural constructions on vector fields and higher order cotangent bundles.Monatsh. Math. 117 (1994), 107–119. Zbl 0796.58002, MR 1266777
Reference: [12] Mikulski, W. M.: The natural operators lifting vector fields to generalized higher order tangent bundles.Arch. Math. (Brno) 36 (2000), 207–212. Zbl 1049.58010, MR 1785038
Reference: [13] Mikulski, W. M.: Non-existence of some canonical constructions on connections.Comment. Math. Univ. Carolin. 44, 4 (2003), 691–695. Zbl 1099.58004, MR 2062885
Reference: [14] Tomáš, J.: Natural operators on vector fields on the cotangent bundles of the bundles of $(k,r)$-velocities.Rend. Circ. Mat. Palermo (2) Suppl. 54 (1988), 113–124. Zbl 0929.58001, MR 1662732
Reference: [15] Tomáš, J.: Natural $T$-functions on the cotangent bundle of a Weil bundle.to appear in Czechoslovak Math. J. MR 2100000
.

Files

Files Size Format View
ArchMathRetro_041-2005-4_6.pdf 270.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo