Previous |  Up |  Next

Article

Title: Integrability and $L^1$-convergence of Rees-Stanojević sums with generalized semi-convex coefficients of non-integral orders (English)
Author: Kaur, Kulwinder
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 4
Year: 2005
Pages: 423-437
Summary lang: English
.
Category: math
.
Summary: Integrability and $L^{1}-$convergence of modified cosine sums introduced by Rees and Stanojević under a class of generalized semi-convex null coefficients are studied by using Cesàro means of non-integral orders. (English)
Keyword: $L^{1}$-convergences
Keyword: Cesàro means
Keyword: conjugate Cesàro mean
Keyword: semi-convex null coefficients
Keyword: generalized semi-convex null coefficients
Keyword: Fourier cosine series
MSC: 42A20
MSC: 42A32
idZBL: Zbl 1111.42001
idMR: MR2195495
.
Date available: 2008-06-06T22:46:48Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107971
.
Reference: [1] Andersen A. F.: On extensions within the theory of Cesàro summability of a classical convergence theorem of Dedekind.Proc. London Math. Soc. 8 (1958), 1–52. MR 0092880
Reference: [2] Bosanquet L. S.: Note on the Bohr-Hardy theorem.J. London Math. Soc. 17 (1942), 166–173. Zbl 0028.14901, MR 0007800
Reference: [3] Bosanquet L. S.: Note on convergence and summability factors (III).Proc. London Math. Soc. (1949), 482–496. Zbl 0032.40402, MR 0027872
Reference: [4] Garrett J. W., Stanojević Č. V.: On integrability and $L^{1}$-convergence of certain cosine sums.Notices, Amer. Math. Soc. 22 (1975), A–166. MR 2625039
Reference: [5] Garrett J. W., Stanojević Č. V.: On $L^{1}$-convergence of certain cosine sums.Proc. Amer. Math. Soc. 54 (1976), 101–105. MR 0394002
Reference: [6] Kano T.: Coefficients of some trigonometric series.J. Fac. Sci. Shihshu University 3 (1968), 153–162. Zbl 0321.42008, MR 0271615
Reference: [7] Kaur K., Bhatia S. S.: Integrability and L-convergence of Rees-Stanojević sums with generalized semi-convex coefficients.Int. J. Math. Math. Sci. 30(11) (2002), 645–650. MR 1916824
Reference: [8] Kolmogorov A. N.: Sur l’ordere de grandeur des coefficients de la series de Fourier–Lebesque.Bull. Polon. Sci. Ser. Sci. Math. Astronom. Phys. (1923) 83–86.
Reference: [9] Young W. H.: On the Fourier series of bounded functions.Proc. London Math. Soc. 12(2) (1913), 41–70.
Reference: [10] Zygmund A.: Trigonometric series.Volume 1, Vol. II, Cambridge University Press. Zbl 1084.42003
.

Files

Files Size Format View
ArchMathRetro_041-2005-4_7.pdf 225.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo