Title:
|
The $D$-stability problem for $4\times 4$ real matrices (English) |
Author:
|
Impram, Serkan T. |
Author:
|
Johnson, Russell |
Author:
|
Pavani, Raffaella |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
41 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
439-450 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give detailed discussion of a procedure for determining the robust $D$-stability of a $4\times 4$ real matrix. The procedure begins from the Hurwitz stability criterion. The procedure is applied to two numerical examples. (English) |
Keyword:
|
diagonal stability |
Keyword:
|
Cauchy indices |
MSC:
|
15A04 |
MSC:
|
15A18 |
MSC:
|
34D15 |
MSC:
|
65F15 |
MSC:
|
93D09 |
idZBL:
|
Zbl 1122.15003 |
idMR:
|
MR2195496 |
. |
Date available:
|
2008-06-06T22:46:51Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107972 |
. |
Reference:
|
[1] Abed E. H.: Decomposition and stability of multiparameter singular perturbation problems.IEEE Trans. Automat. Control, AC-31 (1986), 925–934. Zbl 0601.93004 |
Reference:
|
[2] Barker G. P., Berman A., Plemmons R. J.: Positive diagonal solutions to the Lyapunov equations.Linear and Multilinear Algebra 5 (1978), 249–256. Zbl 0385.15006, MR 0469939 |
Reference:
|
[3] Berman A., Shasha D.: Inertia-preserving matrices.SIAM J. Matrix Anal. Appl. 12-2 (1991), 209–212. Zbl 0733.15004, MR 1089156 |
Reference:
|
[4] Cain B.: Real $3\times 3$ $D$-stable matrices.J. Res. of the National Bureau of Standards, Sec. B 80 (1976), 75–77. MR 0419478 |
Reference:
|
[5] Cain B.: Inside the $D$-stable matrices.Linear Algebra Appl. 56 (1984), 237–243. Zbl 0525.15008, MR 0724564 |
Reference:
|
[6] Cross G. W.: Three types of matrix stability.Linear Algebra Appl. 20 (1978), 253–263. Zbl 0376.15007, MR 0480586 |
Reference:
|
[7] Chen J., Fan M. K. H., Yu C.: On $D$-stability and structured singular values.Systems Control Lett. 24 (1995), 19–24. Zbl 0877.93079, MR 1307123 |
Reference:
|
[8] Carlson D., Datta B. N., Johnson C. R.: A semi-definite Lyapunov theorem and the characterization of tridiagonal $D$-stable matrices.SIAM J. Algebraic Discrete Methods 3 (1982), 293–304. Zbl 0541.15008, MR 0666854 |
Reference:
|
[9] Gantmacher F. R.: The theory of matrices II.Chelsea Publishing Company, 1959. MR 0107649 |
Reference:
|
[10] Hartfiel D. J.: Concerning the interior of $D$-stable matrices.Linear Algebra Appl. 30 (1980), 201–207. MR 0568792 |
Reference:
|
[11] Hershkowitz D.: Recent direction in matrix stability.Linear Algebra Appl. 171 (1992), 161–186. MR 1165452 |
Reference:
|
[12] Horn R. A., Johnson C. R.: Topics in matrix analysis.Cambridge University Press, 1991. Zbl 0729.15001, MR 1091716 |
Reference:
|
[13] Johnson C. R.: Second, third, and fourth order $D$-stability.J. Res. of the National Bureau of Standards, Sec. B 78 (1974), 11–13. Zbl 0283.15005, MR 0340287 |
Reference:
|
[14] Johnson R., Tesi A.: On the $D$-stability problem for real matrices.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 2, No. 2 (1999), 299–314. Zbl 0936.15014, MR 1706600 |
Reference:
|
[15] Kanovei G. V., Logofet D. O.: $D$-stability of $4\times 4$ matrices.J. Comput. Math. Math. Phys. 38 (1998), 1369–1374. MR 1669150 |
Reference:
|
[16] Seidenberg A.: A new decision procedure for elementary algebra.Ann. Math. (2) 60 (1954), 365–374. MR 0063994 |
. |