Previous |  Up |  Next

Article

Title: The $D$-stability problem for $4\times 4$ real matrices (English)
Author: Impram, Serkan T.
Author: Johnson, Russell
Author: Pavani, Raffaella
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 4
Year: 2005
Pages: 439-450
Summary lang: English
.
Category: math
.
Summary: We give detailed discussion of a procedure for determining the robust $D$-stability of a $4\times 4$ real matrix. The procedure begins from the Hurwitz stability criterion. The procedure is applied to two numerical examples. (English)
Keyword: diagonal stability
Keyword: Cauchy indices
MSC: 15A04
MSC: 15A18
MSC: 34D15
MSC: 65F15
MSC: 93D09
idZBL: Zbl 1122.15003
idMR: MR2195496
.
Date available: 2008-06-06T22:46:51Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107972
.
Reference: [1] Abed E. H.: Decomposition and stability of multiparameter singular perturbation problems.IEEE Trans. Automat. Control, AC-31 (1986), 925–934. Zbl 0601.93004
Reference: [2] Barker G. P., Berman A., Plemmons R. J.: Positive diagonal solutions to the Lyapunov equations.Linear and Multilinear Algebra 5 (1978), 249–256. Zbl 0385.15006, MR 0469939
Reference: [3] Berman A., Shasha D.: Inertia-preserving matrices.SIAM J. Matrix Anal. Appl. 12-2 (1991), 209–212. Zbl 0733.15004, MR 1089156
Reference: [4] Cain B.: Real $3\times 3$ $D$-stable matrices.J. Res. of the National Bureau of Standards, Sec. B 80 (1976), 75–77. MR 0419478
Reference: [5] Cain B.: Inside the $D$-stable matrices.Linear Algebra Appl. 56 (1984), 237–243. Zbl 0525.15008, MR 0724564
Reference: [6] Cross G. W.: Three types of matrix stability.Linear Algebra Appl. 20 (1978), 253–263. Zbl 0376.15007, MR 0480586
Reference: [7] Chen J., Fan M. K. H., Yu C.: On $D$-stability and structured singular values.Systems Control Lett. 24 (1995), 19–24. Zbl 0877.93079, MR 1307123
Reference: [8] Carlson D., Datta B. N., Johnson C. R.: A semi-definite Lyapunov theorem and the characterization of tridiagonal $D$-stable matrices.SIAM J. Algebraic Discrete Methods 3 (1982), 293–304. Zbl 0541.15008, MR 0666854
Reference: [9] Gantmacher F. R.: The theory of matrices II.Chelsea Publishing Company, 1959. MR 0107649
Reference: [10] Hartfiel D. J.: Concerning the interior of $D$-stable matrices.Linear Algebra Appl. 30 (1980), 201–207. MR 0568792
Reference: [11] Hershkowitz D.: Recent direction in matrix stability.Linear Algebra Appl. 171 (1992), 161–186. MR 1165452
Reference: [12] Horn R. A., Johnson C. R.: Topics in matrix analysis.Cambridge University Press, 1991. Zbl 0729.15001, MR 1091716
Reference: [13] Johnson C. R.: Second, third, and fourth order $D$-stability.J. Res. of the National Bureau of Standards, Sec. B 78 (1974), 11–13. Zbl 0283.15005, MR 0340287
Reference: [14] Johnson R., Tesi A.: On the $D$-stability problem for real matrices.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 2, No. 2 (1999), 299–314. Zbl 0936.15014, MR 1706600
Reference: [15] Kanovei G. V., Logofet D. O.: $D$-stability of $4\times 4$ matrices.J. Comput. Math. Math. Phys. 38 (1998), 1369–1374. MR 1669150
Reference: [16] Seidenberg A.: A new decision procedure for elementary algebra.Ann. Math. (2) 60 (1954), 365–374. MR 0063994
.

Files

Files Size Format View
ArchMathRetro_041-2005-4_8.pdf 245.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo