Previous |  Up |  Next

Article

Title: A description of derivations of the algebra of symmetric tensors (English)
Author: Heydari, A.
Author: Boroojerdian, N.
Author: Peyghan, E.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 175-184
Summary lang: English
.
Category: math
.
Summary: In this paper the symmetric differential and symmetric Lie derivative are introduced. Using these tools derivations of the algebra of symmetric tensors are classified. We also define a Frölicher-Nijenhuis bracket for vector valued symmetric tensors. (English)
Keyword: derivation
Keyword: Frölicher-Nijenhius bracket
Keyword: symmetric differential
Keyword: symmetric Lie derivative
Keyword: symmetric tensor
MSC: 53A55
MSC: 53C05
MSC: 58A10
idZBL: Zbl 1164.53401
idMR: MR2240355
.
Date available: 2008-06-06T22:47:53Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107994
.
Reference: [1] Crouch P. E.: Geometric structures in systems theory.Institution of Electrical Engineers. Proccedings D. Control Theory and Applications 128(5) (1981), 242–252. MR 0631984
Reference: [2] Frölicher A., Nijenhuis A.: Theory of vector valued differential forms.Part I, Indag. Math. 18 (1956), 338–359. MR 0082554
Reference: [3] Greub W., Halperin S., Vanstone R.: Connections, Curvature and Cohomology.Vol 2, Academic Press, 1973. Zbl 0335.57001
Reference: [4] Grozman P.: Classification of bilinear invariant operators on tensor fields.(Russian) Funct. Anal. Appl. 14, No.2 (1980) 58–59; English translation: Funct. Anal. Appl. 14, No. 2 (1980), 127–128. MR 0575212
Reference: [5] Lewis A. D., Murray R. M.: Controllability of simple mechanical control systems.SIAM J. Control Optim. 35 (3) (1997), 766–790. Zbl 0870.53013, MR 1444338
Reference: [6] Manin Z. I.: Gauge field theory and complex geometry.Springer-Verlag, Berlin, 1988. Zbl 0641.53001, MR 0954833
Reference: [7] Michor P. W.: Remarks on the Frölicher-Nijenhuis bracket.Proccedings of the Conference on Differential Geometry and its Applications, Brno (1986), 197–220. MR 0923350
Reference: [8] Michor P. W.: Graded derivations of the algebra of differential forms associated with a connection.Proccedings of the Conference on Differential Geometry and its Applications, Peniscola (1988), Springer Lecture Notes in Mathematics, Vol. 1410 (1989), 249–261. MR 1034284
Reference: [9] Nijenhuis A., Richardson R.: Cohomoloy and deformations in graded Lie algebras.Bull. Amer. Math. Soc. 72 (1966), 1–29. MR 0195995
Reference: [10] Nijenhuis A., Richardson R.: Deformation of Lie algebra structres.J. Math. Mech. 17 (1967), 89–105. MR 0214636
Reference: [11] Osborn H.: Affine connections complexes.Acta Appl. Math. 59 (1999), 215–227. MR 1741659
Reference: [12] Poor A. W.: Differential geometric structures.McGraw-Hill Company, 1981. Zbl 0493.53027, MR 0647949
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_9.pdf 221.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo