Previous |  Up |  Next

Article

Title: Hille-Wintner type comparison kriteria for half-linear second order differential equations (English)
Author: Došlý, Ondřej
Author: Pátíková, Zuzana
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 185-194
Summary lang: English
.
Category: math
.
Summary: We establish Hille-Wintner type comparison criteria for the half-linear second order differential equation \[ \left(r(t)\Phi (x^{\prime })\right)^{\prime }+c(t)\Phi (x)=0,\quad \Phi (x)=|x|^{p-2}x\,,\ p>1\,, \] where this equation is viewed as a perturbation of another equation of the same form. (English)
Keyword: half-linear differential equation
Keyword: Hille-Wintner comparison criterion
Keyword: Riccati equation
Keyword: principal solution
MSC: 34C10
MSC: 34C15
idZBL: Zbl 1164.34386
idMR: MR2240356
.
Date available: 2008-06-06T22:47:56Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107995
.
Reference: [1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers, Dordrecht/Boston/London, 2002. MR 2091751
Reference: [2] Došlý O.: A remark on conjugacy of half-linear second order differential equations.Math. Slovaca 50 (2000), 67–79. Zbl 0959.34025, MR 1764346
Reference: [3] Došlý O.: Half-Linear Differential Equations.Handbook of Differential Equations: Ordinary Differential Equations, Vol. I, A. Cañada, P. Drábek, A. Fonda ed., Elsevier, Amsterdam, 2004, 161–357. Zbl 1231.34059, MR 2166491
Reference: [4] Došlý O., Lomtatidze A.: Oscillation and nonoscillation criteria for half-linear second order differential equations.to appear in Hiroshima Math. J. Zbl 1123.34028, MR 2259737
Reference: [5] Došlý O., Peňa S.: A linearization method in oscillation theory of half-linear differential equations.to appear in J. Inequal. Appl. MR 2211857
Reference: [6] Došlý O., Řezníčková J.: Regular half-linear second order differential equations.Arch. Math. (Brno) 39 (2003), 233–245. Zbl 1119.34029, MR 2010724
Reference: [7] Elbert Á., Kusano T.: Principal solutions of nonoscillatory half-linear differential equations.Adv. Math. Sci. Appl. 18 (1998), 745–759.
Reference: [8] Elbert Á., Schneider A.: Perturbations of the half-linear Euler differential equation.Results Math. 37 (2000), 56–83. Zbl 0958.34029, MR 1742294
Reference: [9] Jaroš J., Kusano T.: A Picone type identity for half-linear differential equations.Acta Math. Univ. Comenian. 68 (1999), 137–151. MR 1711081
Reference: [10] Kusano T., Yosida N.: Nonoscillation theorems for a class of quasilinear differential equations of second order.Acta Math. Hungar. 76 (1997), 81–89.
Reference: [11] Kusano T., Yosida N., Ogata A.: Strong oscillation and nonoscillation of quasilinear differential equations of second order.Differential Equations Dynam. Systems 2 (1994), 1–10. MR 1386034
Reference: [12] Mirzov J. D.: Principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
Reference: [13] Řezníčková J.: Half-linear Hartman-Wintner theorems.Stud. Univ. Žilina Math. Phys. Ser. 15 (2002), 56–66. Zbl 1051.34026, MR 1980763
Reference: [14] Řezníčková J.: An oscillation criterion for half-linear second order differential equations.Miskolc Math. Notes 5 (2004), 203–212. Zbl 1150.34010, MR 2091995
Reference: [15] Sugie J., Yamaoka N.: Growth conditions for oscillation of nonlinear differential equations with $p$-Laplacian.J. Math. Anal. Appl. 305 (2005), 18–34. Zbl 1085.34029, MR 2132886
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_10.pdf 229.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo