Full entry |
PDF
(0.3 MB)
Feedback

commuting linear operators; decompositions; relative invertibility

References:

[1] Boyer C. P., Kalnins E. G., Miller W., Jr.: **Symmetry and separation of variables for the Helmholtz and Laplace equations**. Nagoya Math. J. 60 (1976), 35–80. MR 0393791 | Zbl 0314.33011

[2] Cox D., Little J., O’Shea D.: **Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra**. Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997, xiv+536 pp. MR 1417938

[3] Eastwood M.: **Higher symmetries of the Laplacian**. Ann. of Math. 161 (2005), 1645–1665. MR 2180410 | Zbl 1091.53020

[4] Eastwood M., Leistner T.: **Higher Symmetries of the Square of the Laplacian**. preprint math.DG/0610610. MR 2384717 | Zbl 1137.58014

[5] Fefferman C., Graham C. R.: **The ambient metric**. arXiv:0710.0919.

[6] Gover A. R.: **Laplacian operators and Q-curvature on conformally Einstein manifolds**. Mathematische Annalen, 336 (2006), 311–334. MR 2244375 | Zbl 1125.53032

[7] Gover A. R., Šilhan J.: **Commuting linear operators and decompositions; applications to Einstein manifolds**. Preprint math/0701377 , www.arxiv.org. MR 2585804 | Zbl 1195.47038

[8] Graham C. R., Jenne R., Mason J. V., Sparling G. A.: **Conformally invariant powers of the Laplacian, I: Existence**. J. London Math. Soc. 46, (1992), 557–565. MR 1190438 | Zbl 0726.53010

[9] Miller W., Jr.: **Symmetry and separation of variables**. Encyclopedia of Mathematics and its Applications, Vol. 4. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977, xxx+285 pp. MR 0460751 | Zbl 0368.35002