Previous |  Up |  Next


Title: Homogeneous Cartan geometries (English)
Author: Hammerl, Matthias
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 431-442
Summary lang: English
Category: math
Summary: We describe invariant principal and Cartan connections on homogeneous principal bundles and show how to calculate the curvature and the holonomy; in the case of an invariant Cartan connection we give a formula for the infinitesimal automorphisms. The main result of this paper is that the above calculations are purely algorithmic. As an example of an homogeneous parabolic geometry we treat a conformal structure on the product of two spheres. (English)
Keyword: Cartan geometry
Keyword: homogeneous space
Keyword: infinitesimal automorphism
Keyword: holonomy
Keyword: conformal geometry
MSC: 53A30
MSC: 53B15
MSC: 53C29
MSC: 53C30
MSC: 53Cxx
idZBL: Zbl 1199.53021
idMR: MR2381786
Date available: 2008-06-06T22:52:05Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Ambrose W., Singer I. M.: A theorem on holonomy.Trans. Amer. Math. Soc. 75 (1953), 428–443. Zbl 0052.18002, MR 0063739
Reference: [2] Armstrong S.: Definite signature conformal holonomy: a complete classification.2005. math.DG/0503388.
Reference: [3] Čap A.: Infinitesimal automorphisms and deformations of parabolic geometries.2005, to appear in J. Europ. Math. Soc. math.DG/0508535. Zbl 1161.32020, MR 2390330
Reference: [4] Čap A.: On left invariant CR structures on SU(2).2006. math.DG/0603730. Zbl 1164.32304, MR 2322406
Reference: [5] Čap A., Schichl H.: Parabolic geometries and canonical Cartan connections.Hokkaido Math. J. 29(3) (2000), 453–505. Zbl 0996.53023, MR 1795487
Reference: [6] Čap A., and Slovák J.: Parabolic Geometries.Book in preparation.
Reference: [7] Cartan É.: Les espaces à connexion conforme.Ann. Soc. Pol. Math. (2) (1923), 172–202.
Reference: [8] Hammerl M.: Homogeneous Cartan geometries.Diploma thesis, 2006. Zbl 1199.53021, MR 2381786
Reference: [9] Leitner F.: Conformal holonomy of bi-invariant metrics.2004. math.DG/0406299. Zbl 1138.53041
Reference: [10] Michor P.: Topics in Differential Geometry.Book in preparation. Zbl 1175.53002, MR 2428390
Reference: [11] Tanaka N.: On the equivalence problem associated with simple graded Lie algebras.Hokkaido Math. J. (1979), 23–84. MR 0533089
Reference: [12] Wang H.-Ch.: On invariant connections over a principal fibre bundle.Nagoya Math. J. 13 (1958), 1–19. Zbl 0086.36502, MR 0107276
Reference: [13] Yamaguchi K.: Differential systems associated with simple graded Lie algebras.Adv. Stud. Pure Math. (1993), 413–494. Zbl 0812.17018, MR 1274961


Files Size Format View
ArchMathRetro_043-2007-5_8.pdf 247.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo